• 제목/요약/키워드: nanometer

검색결과 596건 처리시간 0.028초

Spatial mapping of screened electrostatic potential and superconductivity by scanning tunneling microscopy/spectroscopy

  • Hasegawa, Yukio;Ono, Masanori;Nishio, Takahiro;Eguchi, Toyoaki
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.12-12
    • /
    • 2010
  • By using scanning tunneling microscopy/spectroscopy (STM/S), we can make images of various physical properties in nanometer-scale spatial resolutions. Here, I demonstrate imaging of two electron-correlated subjects; screening and superconductivity by STM/S. The electrostatic potential around a charge is described with the Coulomb potential. When the charge is located in a metal, the potential is modified because of the free electrons in the host. The potential modification, called screening, is one of the fundamental phenomena in the condensed matter physics. Using low-temperature STM we have developed a method to measure electrostatic potential in high spatial and energy resolutions, and observed the potential around external charges screened by two-dimensional surface electronic states. Characteristic potential decay and the Friedel oscillation were clearly observed around the charges [1]. Superconductivity of nano-size materials, whose dimensions are comparable with the coherence length, is quite different from their bulk. We investigated superconductivity of ultra-thin Pb islands by directly measuring the superconducting gaps using STM. The obtained tunneling spectra exhibit a variation of zero bias conductance (ZBC) with a magnetic field, and spatial mappings of ZBC revealed the vortex formation [2]. Size dependence of the vortex formation will be discussed at the presentation.

  • PDF

Scanning Photoelectron Microscopy Study on the Chemical State of Locally Oxidized and Hydrogenized Graphene Layer

  • Km, Wondong;Byun, Iksu;Hwang, Inrok;Park, Bae Ho;Baek, Jaeyun;Shin, Hyun-Joon;Shiu, Hung Wei;Chen, Chia-Hao
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.144.1-144.1
    • /
    • 2013
  • Recently, we have developed the local oxidization and hydrogenization method for graphene layer using atomic force microscope(AFM) tip at room temperature and ambient pressure. With this method we could create locally oxidized or hydrogenized area on the graphene layer with various size from nanometer to micrometer scale, by controlling the amplitude and polarity of the voltage supplied between conducting AFM tip and the graphene layer. We investigated the chemical states of functionalized C atoms in the graphene layer using scanning photoelectron microscopy. By measuring C 1s core level X-ray Photoemission Spectra of the C atoms and suitable fitting process carried on the measured spectra, we could obtain the fraction of oxidization and hydrogenization under various condition, and the evolution of each chemical state during thermal annealing process.

  • PDF

Pechini법에 의한 Ga2O3:Eu3+ 형광체 분말의 제조 (Preparation of Ga2O3:Eu3+ Phosphor by Pechini Method)

  • 박인용;이종원;김선태
    • 한국재료학회지
    • /
    • 제12권7호
    • /
    • pp.517-521
    • /
    • 2002
  • Europium-activated $Ga_2$$O_3$ phosphor powders were prepared by Pechini method from the mixed aqueous solutions of gallium(III) nitrate, europium(III) nitrate, ethylene glycol and citric acid. The phase formation process and particle shape of the powders obtained were investigated by means of TG/DTA, XRD and SEM. It was found that the powders were amorphous or ${\gamma}$-$Ga_2$$O_3$-like phase up to $500^{\circ}C$ and then transformed into $\beta$- $Ga_2$$O_3$ phase above $600 ^{\circ}C$. The powders calcined below $1000^{\circ}C$ were spherical and nanometer-sized. Photoluminescence spectra measured at room temperature showed that the highest luminescence intensity was obtained for the sample synthesized under the conditions of 2 mol% Eu concentration and heat treatment at $1000^{\circ}C$.

나노인덴터와 KOH 습식 식각 기술을 병용한 Si(100) 표면의 마스크리스 패턴 제작 기술 (Maskless Pattern Fabrication on Si (100) Surface by Using Nano Indenter with KOH Wet Etching)

  • 윤성원;신용래;강충길
    • 소성∙가공
    • /
    • 제12권7호
    • /
    • pp.640-646
    • /
    • 2003
  • The nanoprobe based on lithography, mainly represented by SPM based technologies, has been recognized as potential application to fabricate the surface nanostructures because of its operational versatility and simplicity. The objective of the work is to suggest new mastless pattern fabrication technique using the combination of machining by nanoindenter and KOH wet etching. The scratch option of the nanoindenter is a very promising method for obtaining nanometer scale features on a large size specimen because it has a very wide working area and load range. Sample line patterns were machined on a silicon surface, which has a native oxide on it, by constant load scratch (CLS) of the Nanoindenter with a Berkovich diamond tip, and they were etched in KOH solutions to investigate chemical characteristics of the machined silicon surface. After the etching process, the convex structure was made because of masking effect of the affected layer generated by nano-scratch. On the basis of this fact, some line patterns with convex structures were fabricated. Achieved patterns can be used as a mold that will be used for mass production processes such as nanoimprint or PDMS molding process. All morphological data of scratch traces were scanned using atomic force microscope (AFM).

AFM 기반 Tribo-Nanolithography 를 위한 초미세 다이아몬드 팁 켄틸레버의 제작 (Fabrication of Micro Diamond Tip Cantilever for AFM-based Tribo-Nanolithography)

  • 박정우;이득우
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.39-46
    • /
    • 2006
  • Nano-scale fabrication of silicon substrate based on the use of atomic force microscopy (AFM) was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate by a simple scratching process, has been applied instead of conventional silicon cantilever for scanning. A thin mask layer forms in the substrate at the diamond tip-sample junction along scanning path of the tip. The mask layer withstands against wet chemical etching in aqueous KOH solution. Diamond tip acts as a patterning tool like mask film for lithography process. Hence these sequential processes, called tribo-nanolithography, TNL, can fabricate 2D or 3D micro structures in nanometer range. This study demonstrates the novel fabrication processes of the micro cantilever and diamond tip as a tool for TNL using micro-patterning, wet chemical etching and CVD. The developed TNL tools show outstanding machinability against single crystal silicon wafer. Hence, they are expected to have a possibility for industrial applications as a micro-to-nano machining tool.

$Ga^+$ 이온 빔 조사량에 따른 자기 조립 단분자막의 습식에칭 특성 (Effect of $Ga^+$ Ion Beam Irradiation On the Wet Etching Characteristic of Self-Assembled Monolayer)

  • 노동선;김대은
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.326-329
    • /
    • 2005
  • As a flexible method to fabricate sub-micrometer patterns, Focused Ion Beam (FIB) instrument and Self-Assembled Monolayer (SAM) resist are introduced in this work. FIB instrument is known to be a very precise processing machine that is able to fabricate micro-scale structures or patterns, and SAM is known as a good etch resistance resist material. If SAM is applied as a resist in FIB processing fur fabricating nano-scale patterns, there will be much benefit. For instance, low energy ion beam is only needed for machining SAM material selectively, since ultra thin SAM is very sensitive to $Ga^+$ ion beam irradiation. Also, minimized beam spot radius (sub-tens nanometer) can be applied to FIB processing. With the ultimate goal of optimizing nano-scale pattern fabrication process, interaction between SAM coated specimen and $Ga^+$ ion dose during FIB processing was observed. From the experimental results, adequate ion dose for machining SAM material was identified.

  • PDF

전기방사법을 이용한 Polycarbonate 나노 섬유 제조 (Fabrication of Polycarbonate Nano Fibers Using Electrospinning)

  • 김길태;박상경;이재근;안영철
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.512-518
    • /
    • 2005
  • Polymeric fibers with nanometer-scale diameters are produced by electrospinning. When the electrical forces at the surface of a polymer solution or melt overcome the surface tension then electrospinning occurs. Polycarbonate has been electrospun. Electrospun fibers are observed by scanning electron microscopy and transmission electron microscopy. The surface morphology of e-spun fiber has been studied by many variables that are involved in different polymer concentrations, solvent mixing ratios and ambient parameters. The average diameters of the electrospun fibers range from 200 nm to 4,570 nm when the PC concentration is decreasing from 15.5\;wt{\%}\;to\;25\;wt{\%}.$ The higher concentration of the polymer solution makes the fibers thicker due to preventing the fiber stretching. With respect evaporation effects, the solvent mixing ratios cause significant changes of the fiber size distribution. As a matter of fact the fiber diameter steadily increases with increasing amount of DMF until the solvent mixture is at THF:DMF ratio of 60:40.

Patterning self-assembled pentacene nanolayer by EUV-induced 3-dimensional polymerization

  • 황한나;한진희;임준;신현준;김영독;황찬국
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.65-65
    • /
    • 2010
  • Extreme ultraviolet lithography (EUVL) is expected to be applied for making patterns below 32 nm in device industry. An ultrathin EUV photoresist (PR) of a few nm in thickness is required to reduce minimum feature size further. Here, we show that pentacene molecular layers can be employed as a new EUV resist for the first time. Dots and lines in nm scale are successfully realized using the new molecular resist. We clearly provide the mechanism for forming the nanopatterns with scanning photoemission microscope (SPEM), EUV interference lithography (EUV-IL), atomic force microscope (AFM), photoemission spectroscopy (PES), etc. The molecular PR has several advantages over traditional polymer EUV PRs; for example, high thermal/chemical stability, negligible outgassing, ability to control the height and width on the nanometer scale, leaving fewer residuals, no need for a chemical development process and thus reduction of chemical waste to make the nanopatterns. Besides, it could be applied to any substrate to which pentacene bonds chemically, such as $SiO_2$, SiN, and SiON, which is of importance in the device industry.

  • PDF

Adsorption of Methylene Blue on Titanate Nanotubes Synthesized with Ultra-Small Fe3O4 Nanoparticles

  • Marc, Maciej;Dudek, Miroslaw R.;Koziol, Jacek J.;Zapotoczny, Bartlomiej
    • Nano
    • /
    • 제13권12호
    • /
    • pp.1850142.1-1850142.9
    • /
    • 2018
  • Modified titanate nanotubes (TNT) were tested for their adsorption of methylene blue (MB) from water solutions. They were obtained from the $TiO_2$ nanopowder using a standard alkaline hydrothermal method but in the stage of acid washing, when the titanate flakes begin to roll into nanotubes, magnetite nanoparticles were added. The $Fe_3O_4$ magnetic nanoparticles with diameter of around 2 nm and 12 nm were used in the tests. Significantly stronger adsorption of MB was observed when smaller nanoparticles were used compared to using larger nanoparticles and compared to the case of unmodified nanotubes. It was shown that the increased adsorption of MB is associated with a more negative value of ${\zeta}$-potential for titanates modified by the ultra-small nanoparticles. In the adsorption experiment, pH 7 was selected. These results may prove to be of great importance in the case of potential applications corresponding to the use of such material for wastewater purification.

Effect of Ammonium Persulfate Concentration on Characteristics of Cellulose Nanocrystals from Oil Palm Frond

  • ZAINI, Lukmanul Hakim;FEBRIANTO, Fauzi;WISTARA, I Nyoman Jaya;N, Marwanto;MAULANA, Muhammad Iqbal;LEE, Seung Hwan;KIM, Nam Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권5호
    • /
    • pp.597-606
    • /
    • 2019
  • Cellulose nanocrystals (CNCs) were successfully isolated from oil palm fronds (OPFs) using different concentrations of ammonium persulfate (APS), and their characteristics were analyzed by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD) analysis, and thermogravimetric analysis (TGA). APS oxidation effectively isolated CNCs with rod-like morphology in nanometer scale. The dimensions of the CNCs decreased with increasing APS concentration. FTIR and XRD analyses revealed that all the CNCs showed crystals in the form of cellulose I without crystal transformation occurring during APS treatment. The relative crystallinity of the CNCs increased with increasing APS concentration, whereas their thermal stability decreased. An APS concentration of 2 M was found to be optimal for isolating the CNCs.