DOI QR코드

DOI QR Code

Adsorption of Methylene Blue on Titanate Nanotubes Synthesized with Ultra-Small Fe3O4 Nanoparticles

  • Marc, Maciej (Institute of Physics, University of Zielona Gora) ;
  • Dudek, Miroslaw R. (Institute of Physics, University of Zielona Gora) ;
  • Koziol, Jacek J. (Faculty of Biological Sciences University of Zielona Gora) ;
  • Zapotoczny, Bartlomiej (Centre for Nanometer-Scale Science and Advanced Materials NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science Jagiellonian University)
  • Received : 2018.06.26
  • Accepted : 2018.11.01
  • Published : 2018.12.31

Abstract

Modified titanate nanotubes (TNT) were tested for their adsorption of methylene blue (MB) from water solutions. They were obtained from the $TiO_2$ nanopowder using a standard alkaline hydrothermal method but in the stage of acid washing, when the titanate flakes begin to roll into nanotubes, magnetite nanoparticles were added. The $Fe_3O_4$ magnetic nanoparticles with diameter of around 2 nm and 12 nm were used in the tests. Significantly stronger adsorption of MB was observed when smaller nanoparticles were used compared to using larger nanoparticles and compared to the case of unmodified nanotubes. It was shown that the increased adsorption of MB is associated with a more negative value of ${\zeta}$-potential for titanates modified by the ultra-small nanoparticles. In the adsorption experiment, pH 7 was selected. These results may prove to be of great importance in the case of potential applications corresponding to the use of such material for wastewater purification.

Keywords

References

  1. W. Zhou, H. Liu, R. I. Boughton, G. Du, J. Lin, J. Wang and D. Liu, J. Mater. Chem. 20, 5993 (2010). https://doi.org/10.1039/b927224k
  2. B. Oregan and M. Gratze, Nature 353, 737 (1991). https://doi.org/10.1038/353737a0
  3. J. O. Carneiro, V. Teixeira, A. Portinha, A. Magalhaes, P. Coutinho, C. J. Tavares and R. Newton, Mater. Sci. Eng. B 138, 144 (2007). https://doi.org/10.1016/j.mseb.2005.08.130
  4. W. Han, Y. D. Wang and Y. F. Zheng, Adv. Mat. Res. 79, 389 (2009).
  5. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara, Langmuir 14, 3160 (1998). https://doi.org/10.1021/la9713816
  6. D. L. Morgan, H. W. Liu, R. L. Frost and E. R. Waclawik, J. Phys. Chem. C 114, 101 (2009).
  7. N. Liu, X. Chen, J. Zhang and J. W. Schwank, Catal. Today 225, 34 (2014). https://doi.org/10.1016/j.cattod.2013.10.090
  8. F. Jiang, S. Zheng, L. An and H. Chen, Appl. Surf. Sci. 258, 7188 (2012). https://doi.org/10.1016/j.apsusc.2012.04.032
  9. Y. Tang, Y. Zhang, J. Deng, J. Wei, H. L. Tam, B. K. Chandran, Z. Dong, Z. Chen and X. Chen, Adv. Mater. 26, 6111 (2014). https://doi.org/10.1002/adma.201402000
  10. Y. C. Yen, W. Y. Ko, J. Z. Chen and K. J. Lin, Electrochim. Acta 105, 142 (2013). https://doi.org/10.1016/j.electacta.2013.04.128
  11. F. Pignanelli, L. Fernandez-Werner, M. Romero, D. Mombru, M. A. Tumelero, A. A. Pasa and A. W. Mombru, Mater. Res. Bull. 106, 40 (2018). https://doi.org/10.1016/j.materresbull.2018.05.029
  12. A. P. S. Souza, O. P. Ferreira, V. F. Nunes, A. F. Almeida, F. M. Lima and F. N. A. Freire, Mater. Res. 21, e20180110 (2018).
  13. S. Xu, A. J. Du, J. Liu, J. Ng and D. D. Sun, Int. J. Hydro. Energy 36, 6560 (2011). https://doi.org/10.1016/j.ijhydene.2011.02.103
  14. M. S. Mahmoud, E. Ahmed, A. A. Farghali, A. H. Zaki and N. A. Barakat, Mater. Chem. Phys. 217, 125 (2018). https://doi.org/10.1016/j.matchemphys.2018.06.058
  15. L. Xiong, Y. Yang, J. Mai, W. Sun, C. Zhang, D. Wei, Q. Chen and J. Ni, Chem. Eng. J. 156, 313 (2010). https://doi.org/10.1016/j.cej.2009.10.023
  16. R. Sattarfard, M. A. Behnajady and H. Eskandarloo, J. Porous Mater. 25, 359 (2018). https://doi.org/10.1007/s10934-017-0447-5
  17. Y. Wang, J. Wang, X. Deng, J. Wang, H. Wang, M. Wu, Z. Jiao and Y. Liu, Nano Res. 2, 543 (2009). https://doi.org/10.1007/s12274-009-9052-5
  18. S. Sruthi, A. Loiseau, J. Boudon, F. Sallem, L. Maurizi, P. V. Mohanan and N. Millot, Toxicol. Appl. Pharmacol. 353, 74 (2018). https://doi.org/10.1016/j.taap.2018.06.013
  19. V. Ferreira, M. Nunes, A. Silvestre and O. Monteiro, Mater. Chem. Phys. 142, 355 (2013). https://doi.org/10.1016/j.matchemphys.2013.07.029
  20. P. Szirmai, J. Stevens, E. Horvath, L. Ciric, M. Kollar, L. Forro and B. Nafradi, Catal. Today 284, 146 (2017). https://doi.org/10.1016/j.cattod.2016.11.010
  21. C. Guo, L. Xu, J. He, L. Hu, B. Wang and L. Da, Nano 12, 1750075 (2017). https://doi.org/10.1142/S1793292017500758
  22. J. Zhu, Q. Liu, Z. Li, J. Liu, H. Zhang, R. Li and J. Wang, J. Hazard. Mater 353, 9 (2018). https://doi.org/10.1016/j.jhazmat.2018.03.042
  23. M. Kitano, K. Nakajima, J. N. Kondo, S. Hayashi and M. Hara, J. Am. Chem. Soc. 132, 6622 (2010). https://doi.org/10.1021/ja100435w
  24. S. Zhou, D. Jiang, X. Liu, Y. Chen and D. Yin, RSC Adv. 8, 3657 (2018). https://doi.org/10.1039/C7RA12994G
  25. R. Baan, K. Straif, Y. Grosse, B. Secretan, F. El Ghissassi, V. Bouvard and L. Benbrahim-Tallaa, Lancet Oncol. 9, 322 (2008). https://doi.org/10.1016/S1470-2045(08)70089-5
  26. K. Hu, X. Xiao, X. Cao, R. Hao, X. Zuo, X. Zhang and J. Nan, J. Hazard. Mater. 192, 514 (2011). https://doi.org/10.1016/j.jhazmat.2011.05.053
  27. C. T. Hsieh, W. S. Fan and W. Y. Chen, Microporous Mesoporous Mater. 116, 677 (2008). https://doi.org/10.1016/j.micromeso.2008.05.045
  28. M. Feng, W. You, Z. Wu, Q. Chen and H. Zhan, ACS Appl. Mater. Inter. 5, 12654 (2013). https://doi.org/10.1021/am404011k
  29. H. Niu, S. Zhang, X. Zhang and Y. Cai, ACS Appl. Mater. Inter. 2, 1157 (2010). https://doi.org/10.1021/am100010x
  30. A. L. Papa, L. Maurizi, D. Vandroux, P. Walker and N. Millot, J. Phys. Chem. C 115, 19012 (2011). https://doi.org/10.1021/jp2056893
  31. B. Zapotoczny, N. Guskos, J. J. Koziol and M. R. Dudek, J. Magn. Magn. Mater. 374, 96 (2015). https://doi.org/10.1016/j.jmmm.2014.08.035
  32. A. Azari, B. Kakavandi, R. R. Kalantary, E. Ahmadi, M. Gholami, Z. Torkshavand and M. Azizi, J. Porous Mater. 22, 1083 (2015). https://doi.org/10.1007/s10934-015-9983-z
  33. M. Namvari and H. Namazi, Int. J. Environ. Sci. Technol. 11, 1527 (2014). https://doi.org/10.1007/s13762-014-0595-y
  34. A. Sandoval, C. Hernandez-Ventura and T. E. Klimova, Fuel 198, 22 (2017). https://doi.org/10.1016/j.fuel.2016.11.007
  35. B. Zielinska, J. Grzechulska, B. Grzmil and A. W. Morawski, Appl. Catal. B 35, L1 (2001). https://doi.org/10.1016/S0926-3373(01)00230-2
  36. K. Siwinska-Stefanska, F. Ciesielczyk, T. Jesionowski, J. Sojka-Ledakowicz, W. Lota and A. Walawska, Fibers Text. East. Eur. 19, 76 (2011).
  37. T. Gao, H. Fjellvag and P. Norby, Inorg. Chem. 48, 1423 (2009). https://doi.org/10.1021/ic801508k
  38. L. Qian, Z. L. Du, S. Y. Yang and Z. S. Jin, J. Mol. Struct. 749, 103 (2005). https://doi.org/10.1016/j.molstruc.2005.04.002
  39. L. Slavov, M. V. Abrashev, T. Merodiiska, C. Gelev, R. E. Vandenberghe, I. Markova-Deneva and I. Nedkov, J. Magn. Magn. Mater. 322, 1904 (2010). https://doi.org/10.1016/j.jmmm.2010.01.005
  40. I. Kazeminezhad and S. Mosivand, Size dependence of electrooxidized $Fe_3O_4$ nanoparticles on surfactant concentration, in Proc. of World Acad. Sci. Eng. Technol. (WASET, 2011), p. 338.
  41. M. Barale, C. Mansour, F. Carrette, E. Pavageau, H. Catalette, G. Lefevre, M. Fedoroff and G. Cote, J. Nucl. Mater. 381, 302 (2008). https://doi.org/10.1016/j.jnucmat.2008.09.003
  42. E. Tombacz, A. Majzik, Z. S. Horvat and E. Illes, Rom. Rep. Phys. 58, 281 (2006).
  43. M. Namdeo and S. Bajpai, EJEAFChe 7, 3082 (2008).
  44. B. Zapotoczny, M. Dudek, J. Koziol and J. Mleczko, Physica A 392, 1493 (2013). https://doi.org/10.1016/j.physa.2012.12.002