• Title/Summary/Keyword: nanometer

Search Result 595, Processing Time 0.036 seconds

Effect of Particle Size and Structure of TiO2 Semiconductor on Photoelectronic Efficiency of Dye-sensitized Solar Cell (TiO2 나노 입자의 크기와 결정 구조가 염료감응형 태양전지의 광전 효율에 미치는 영향)

  • Lee, Hyeonju;Park, No-Kuk;Lee, Tae Jin;Han, Gi Bo;Kang, Misook
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.22-29
    • /
    • 2013
  • A comparison of photo-efficiency on dye-sensitized solar cells (DSCs) assembled by using $TiO_2$ materials with different structures and crystallite sizes were investigated in this study. The size and structure of $TiO_2$ have been controlled by pHs and calcination temperatures using solvothermal and sol-gel methods, respectively. Six types of $TiO_2$ samples are obtained; 8.9, 12.8, and 20.2 nm sized $TiO_2$ particles, and the other types using sol-gel method were anatase-rutile mixtures on the structure. The highest photo-efficiency which is remarkable result reached to 8.6% over DSC assembled by anatase $TiO_2$ with 20.2 nm particle size.

Microstructure of GaN films on sapphire surfaces with various orientations (사파이어 기판 방향성에 따른 GaN 박막의 미세구조)

  • 김유택
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.2
    • /
    • pp.162-167
    • /
    • 1999
  • GaN epilayers deposited by the OMVPE method on sapphires with 3 different surface orientations were investigated by TEM and their difference in mucrostructure were compared with each other. GaN epilayers were grown on the all three kinds of sapphire substrates; however, the best interfacial state and crystallinity were observed in the specimen using a {0001} substrate The density of defects in GaN epilayers on {0001} substrates was also less than others. No buffer layer was found at the interfaces of all the specimens; however, it was observed that the region which shows lattice distortion at the interface was only a few nonameter wide. Accordingly, TEM investigation revealed that GaN epilayers having some internal defects could be grown on sapphire {1120} and {1102} planes without a buffer layer, and the hetero-epitaxial GaN films were obtained from the specimen using {0001} substrates with the microstructural point of view.

  • PDF

Three-dimensional porous graphene materials for environmental applications

  • Rethinasabapathy, Muruganantham;Kang, Sung-Min;Jang, Sung-Chan;Huh, Yun Suk
    • Carbon letters
    • /
    • v.22
    • /
    • pp.1-13
    • /
    • 2017
  • Porous materials play a vital role in science and technology. The ability to control their pore structures at the atomic, molecular, and nanometer scales enable interactions with atoms, ions and molecules to occur throughout the bulk of the material, for practical applications. Three-dimensional (3D) porous carbon-based materials (e.g., graphene aerogels/hydrogels, sponges and foams) made of graphene or graphene oxide-based networks have attracted considerable attention because they offer low density, high porosity, large surface area, excellent electrical conductivity and stable mechanical properties. Water pollution and associated environmental issues have become a hot topic in recent years. Rapid industrialization has led to a massive increase in the amount of wastewater that industries discharge into the environment. Water pollution is caused by oil spills, heavy metals, dyes, and organic compounds released by industry, as well as via unpredictable accidents. In addition, water pollution is also caused by radionuclides released by nuclear disasters or leakage. This review presents an overview of the state-of-the-art synthesis methodologies of 3D porous graphene materials and highlights their synthesis for environmental applications. The various synthetic methods used to prepare these 3D materials are discussed, particularly template-free self-assembly methods, and template-directed methods. Some key results are summarized, where 3D graphene materials have been used for the adsorption of dyes, heavy metals, and radioactive materials from polluted environments.

Surface Preparation of III-V Semiconductors

  • Im, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.86.1-86.1
    • /
    • 2015
  • As the feature size of Si-based semiconductor shrinks to nanometer scale, we are facing to the problems such as short channel effect and leakage current. One of the solutions to cope with those issues is to bring III-V compound semiconductors to the semiconductor structures, because III-V compound semiconductors have much higher carrier mobility than Si. However, introduction of III-V semiconductors to the current Si-based manufacturing process requires great challenge in the development of process integration, since they exhibit totally different physical and chemical properties from Si. For example, epitaxial growth, surface preparation and wet etching of III-V semiconductors have to be optimized for production. In addition, oxidation mechanisms of III-V semiconductors should be elucidated and re-growth of native oxide should be controlled. In this study, surface preparation methods of various III-V compound semiconductors such as GaAs, InAs, and GaSb are introduced in terms of i) how their surfaces are modified after different chemical treatments, ii) how they will be re-oxidized after chemical treatments, and iii) is there any effect of surface orientation on the surface preparation and re-growth of oxide. Surface termination and behaviors on those semiconductors were observed by MIR-FTIR, XPS, ellipsometer, and contact angle measurements. In addition, photoresist stripping process on III-V semiconductor is also studied, because there is a chance that a conventional photoresist stripping process can attack III-V semiconductor surfaces. Based on the Hansen theory various organic solvents such as 1-methyl-2-pyrrolydone, dimethyl sulfoxide, benzyl alcohol, and propylene carbonate, were selected to remove photoresists with and without ion implantation. Although SPM and DIO3 caused etching and/or surface roughening of III-V semiconductor surface, organic solvents could remove I-line photoresist without attack of III-V semiconductor surface. The behavior of photoresist removal depends on the solvent temperature and ion implantation dose.

  • PDF

Nano Fabrication of Functional Materials by Pulsed Laser Ablation

  • Yun, Jong-Won
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.6.2-6.2
    • /
    • 2009
  • Nanostructured materials arecurrently receiving much attention because of their unique structural andphysical properties. Research has been stimulated by the envisagedapplications for this new class of materials in electronics, optics, catalysisand magnetic storage since the properties derived from nanometer-scalematerials are not present in either isolated molecules or micrometer-scalesolids. This study presents the experimental results derived fromthe various functional materials processed in nano-scale using pulsed laserablation, since those materials exhibit new physical phenomena caused by thereduction dimensionality. This presentation consists of three mainparts to consider in pulsed laser ablation (PLA) technique; first nanocrystallinefilms, second, nanocolloidal particles in liquid, and third, nanocoating fororganic/inorganic hybridization. Firstly, nanocrystalline films weresynthesized by pulsed laser deposition at various Ar gas pressures withoutsubstrate heating and/or post annealing treatments. From the controlof processng parameters, nanocystalline films of complex oxides and non-oxidematerials have been successfully fabricated. The excellentcapability of pulsed laser ablation for reactive deposition and its ability totransfer the original stoichiometry of the bulk target to the deposited filmsmakes it suitable for the fabrication of various functionalmaterials. Then, pulsed laser ablation in liquid has attracted muchattention as a new technique to prepare nanocolloidal particles. Inthis work, we represent a novel synthetic approach to directly producehighly-dispersed fluorescent colloidal nanoparticles using the PLA from ceramicbulk target in liquid phase without any surfactant. Furthermore, novel methodbased on simultaneous motion tracking of several individual nanoparticles isproposed for the convenient determination of nanoparticle sizedistributions. Finally, we report that the GaAs nanocrystals issynthesized successfully on the surface of PMMA (polymethylmethacrylate)microspheres by modified PLD technique using a particle fluidizationunit. The characteristics of the laser deposited GaAs nanocrytalswere then investigated. It should be noted that this is the first successfultrial to apply the PLD process nanocrystals on spherical polymermatrices. The present process is found to be a promising method fororganic/inorganic hybridization.

  • PDF

Synthesis of Crosslinked Polystyrene-b-Poly(hydroxyethyl methacrylate)-b-Poly(styrene sulfonic acid) Triblock Copolymer for Electrolyte Membranes

  • Lee, Do-Kyoung;Park, Jung-Tae;Roh, Dong-Kyu;Min, Byoung-Ryul;Kim, Jong-Hak
    • Macromolecular Research
    • /
    • v.17 no.5
    • /
    • pp.325-331
    • /
    • 2009
  • The synthesis and the characterization of crosslinked ABC triblock copolymer, i.e. polystyrene-b-poly (hydroxyethyl methacrylate)-b-poly(styrene sulfonic acid), (PS-b-PHEMA-b-PSSA) is reported. PS-b-PHEMA-b-PSSA triblock copolymer at 20:10:70 wt% was sequentially synthesized via atom transfer radical polymerization (ATRP). The middle block was crosslinked by sulfosuccinic acid (SA) via the esterification reaction between -OH of PHEMA and -COOH of SA, as demonstrated by FTIR spectroscopy. As increasing amounts of SA, ion exchange capacity (IEC) continuously increased from 2.13 to 2.82 meq/g but water uptake decreased from 181.8 to 82.7%, resulting from the competitive effect between crosslinked structure and the increasing concentration of sulfonic acid group. A maximum proton conductivity of crosslinked triblock copolymer membrane at room temperature reached up to 0.198 S/cm at 3.8 w% of SA, which was more than two-fold higher than that of Nafion 117(0.08 S/cm). Transmission electron microscopy (TEM) analysis clearly showed that the PS-b-PHEMA-b-PSSA triblock copolymer is microphase-separated with a nanometer range and well developed to provide the connectivity of ionic PSSA domains. The membranes exhibited the good thermal properties up to $250^{\circ}C$ presumably resulting from the microphase-separated and crosslinked structure of the membranes, as revealed by thermal gravimetric analysis (TGA).

Phase-shifting diffraction grating interferometer for testing concave mirrors (오목 거울 측정용 위상천이 회절격자 간섭계)

  • 황태준;김승우
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.392-398
    • /
    • 2003
  • We present a novel concept of a phase-shifting diffraction-grating interferometer, which is intended for the optical testing of concave mirrors with high precision. The interferometer is configured with a single reflective diffraction grating, which performs multiple functions of beam splitting, beam recombination, and phase shifting. The reference and test wave fronts are generated by means of reflective diffraction at the focal plane of a microscope objective with large numerical aperture, which allows testing fast mirrors with low f-numbers. The fiber-optic confocal design is adopted for the microscope objective to focus a converging beam on the diffractive grating, which greatly reduces the alignment error between the focusing optics and the diffraction grating. Translating the grating provides phase shifting, which allows measurement of the figure errors of the test mirror to nanometer accuracy.

Nano-patterning technology using an UV-NIL method (UV-NIL(Ultraviolet-Nano-Imprinting-Lithography) 방법을 이용한 나노 패터닝기술)

  • 심영석;정준호;손현기;신영재;이응숙;최성욱;김재호
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • Ultraviolet-nanoimprint lithography (UV-NIL) is a promising method for cost-effectively defining nanoscale structures at room temperature and low pressure. A 5${\times}$5${\times}$0.09 in. quartz stamp is fabricated using the etch process in which a Cr film was employed as a hard mask for transferring nanostructures onto the quartz plate. FAS(Fluoroalkanesilane) is used as a material for anti-adhesion surface treatment on the stamp and a thin organic film to improve adhesion on a wafer is formed by spin-coating. The low viscosity resin droplets with a nanometer scale volume are dispensed on the whole area of the coated wafer. The UV-NIL experiments have been performed using the EVG620-NIL. 370 nm - 1 m features on the stamp have been transferred to the thin resin layer on the wafer using the multi-dispensing method and UV-NIL process. We have measured the imprinted patterns and residual layer using SEM and AFM to evaluate the potential of the process.

A Study on the Channeling Effect of Ultra Low Energy B, P and As Ion Implant to Form Ultra-Shallow Junction of Semiconductor Device (초미세 접합형성을 위한 극 저 에너지 B, P 및 As 이온주입시 채널링 현상에 관한연구)

  • 강정원;황호정
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.27-33
    • /
    • 1999
  • We have investigated the ultra-low energy B, P, and As ion implantation using upgraded MDRANGE code to study formation of nanometer junction depths. Even at the ultra-low energies simulated in this paper, it was revealed that ion channeling should be carefully considered. It was estimated that ion channelings have much effect on dopant profiles when B ion implant energies were more than 500 eV, P more than 2 keV and As approximately more than 4 keV. When we compared 2-dimensional dopant profiles of 1 keV B with that of tilted one, 2 keV P with tilt, and 5 keV As with tilt, we could find that most channeling cases occurred not lateral directions but depth directions.

  • PDF

Polarity-tuned Gel Polymer Electrolyte Coating of High-voltage LiCoO2 Cathode Materials

  • Park, Jang-Hoon;Cho, Ju-Hyun;Kim, Jong-Su;Shim, Eun-Gi;Lee, Yun-Sung;Lee, Sang-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • We demonstrate a new surface modification of high-voltage lithium cobalt oxide ($LiCoO_2$) cathode active materials for lithium-ion batteries. This approach is based on exploitation of a polarity-tuned gel polymer electrolyte (GPE) coating. Herein, two contrast polymers having different polarity are chosen: polyimide (PI) synthesized from thermally curing 4-component (pyromellitic dianhydride/biphenyl dianhydride/phenylenediamine/oxydianiline) polyamic acid (as a polar GPE) and ethylene-vinyl acetate copolymer (EVA) containing 12 wt% vinyl acetate repeating unit (as a less polar GPE). The strong affinity of polyamic acid for $LiCoO_2$ allows the resulting PI coating layer to present a highly-continuous surface film of nanometer thickness. On the other hand, the less polar EVA coating layer is poorly deposited onto the $LiCoO_2$, resulting in a locally agglomerated morphology with relatively high thickness. Based on the characterization of GPE coating layers, their structural difference on the electrochemical performance and thermal stability of high-voltage (herein, 4.4 V) $LiCoO_2$ is thoroughly investigated. In comparison to the EVA coating layer, the PI coating layer is effective in preventing the direct exposure of $LiCoO_2$ to liquid electrolyte, which thus plays a viable role in improving the high-voltage cell performance and mitigating the interfacial exothermic reaction between the charged $LiCoO_2$ and liquid electrolytes.