• 제목/요약/키워드: nanohybridization

검색결과 5건 처리시간 0.022초

Interfacial Engineering of Graphenes for Energy and Biosensor Devices

  • Park, H.S.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.12-12
    • /
    • 2011
  • Interfacing functional materials with electrical or biological systems is of prime importance in terms of expanding applicative fields and obtaining high performances of devices. Herein, I report the functionalization of graphenes through supramolecular assembly and their electrochemical applications into fuel cells, supercapacitors, and biosensor devices. The solution processable nanohybridization of graphenes by functional materials such as ionic liquids, polyelectrolytes, block copolymers, and biomaterials, described herein would pave the way to obtain high performances of flexible energy and biosensor devices as well as to overcome the existing technology barriers.

  • PDF

Info-Convergence Ceramic Nanosystems

  • Jin, Wenji;Park, Dae-Hwan
    • 한국세라믹학회지
    • /
    • 제56권5호
    • /
    • pp.421-434
    • /
    • 2019
  • We face many fascinating and diverse challenges, the most important among which is to determine how to store a large amount of information with novel approaches. Info-convergence ceramic nanosystems, which combine ceramic materials science and information technology, may provide an attractive alternative. This review considers recent multidisciplinary advances in the development of info-convergence nanosystems based on ceramic materials and discusses various strategies under ceramic-based information systems with a special focus on materials and nanohybridization technologies. Ceramic materials have played diverse roles not only as the generic coding support, but also as the central coding substance. The review highlights the ceramic nanohybrid bio code and ceramic nanoparticle optical code for applications in tracking-and-traceability management, nano-forensics, anti-counterfeiting, and even communication, as well as the four steps of encoding, encrypting, decrypting, and decoding for the desired applications. Additionally, associated challenges, potential solutions, and perspectives for future developments in the field are discussed.

전기 화학 응용을 위한 폴리옥소메탈레이트와 나노물질의 나노하이브리드화 (Nanohybridization of Polyoxometalate and Nanomaterials for Electrochemical Application)

  • 양민호;최봉길
    • 공업화학
    • /
    • 제29권4호
    • /
    • pp.363-368
    • /
    • 2018
  • Polyoxometalates (POMs)는 뛰어난 특성과 전기 화학 응용 분야에 대한 많은 잠재력을 가지고 있다. POM은 매우 잘 녹는 성질 때문에 전기화학 소자에서 POM의 잠재력을 최대한 활용하기 위해서는 다양한 기능성 재료에 POM을 고정화하는 과정이 필수이다. 본 논문에서는 우리는 최근 개발된 고정화 방법인 나노 카본 및 전도성 고분자와 같은 전도성 나노 물질에 POM을 도입하는 기술들에 대해서 논하고자 한다. Langmuir-Blodgett 기술, 층별 자기 조립 및 전기화학 in-situ 중합을 사용하여 전도성 고분자 매트릭스 및 POM을 나노 카본으로 도입할 수 있는 다양한 고정화 전략을 소개한다. 또한 우리는 POM의 응용 분야인 물 산화용 전극 촉매, 리튬 이온 배터리, 슈퍼커패시터 및 전기화학적 바이오 센서 등의 다양한 전기 화학 응용 분야를 다룬다.

Au/Titania Composite Nanoparticle Arrays with Controlled Size and Spacing by Organic-Inorganic Nanohybridization in Thin Film Block Copolymer Templates

  • Li, Xue;Fu, Jun;Steinhart, Martin;Kim, Dong-Ha;Knoll, Wolfgang
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권6호
    • /
    • pp.1015-1020
    • /
    • 2007
  • A simple approach to prepare arrays of Au/TiO2 composite nanoparticles by using Au-loaded block copolymers as templates combined with a sol-gel process is described. The organic-inorganic hybrid films with closely packed inorganic nanodomains in organic matrix are produced by spin coating the mixtures of polystyrene-block-poly(ethylene oxide) (PS-b-PEO)/HAuCl4 solution and sol-gel precursor solution. After removal of the organic matrix with deep UV irradiation, arrays of Au/TiO2 composite nanoparticles with different compositions or particle sizes can be easily produced. Different photoluminescence (PL) emission spectra from an organic-inorganic hybrid film and arrays of Au/TiO2 composite nanoparticles indicate that TiO2 and Au components exist as separate state in the initial hybrid film and form composite nanoparticles after the removal of the block copolymer matrix.

직접패턴형 SnO2 박막의 전도성 나노구조체 첨가연구 (Direct-Patternable SnO2 Thin Films Incorporated with Conducting Nanostructure Materials)

  • 김현철;박형호
    • 한국재료학회지
    • /
    • 제20권10호
    • /
    • pp.513-517
    • /
    • 2010
  • There have been many efforts to modify and improve the properties of functional thin films by hybridization with nano-sized materials. For the fabrication of electronic circuits, micro-patterning is a commonly used process. For photochemical metal-organic deposition, photoresist and dry etching are not necessary for microscale patterning. We obtained direct-patternable $SnO_2$ thin films using a photosensitive solution containing Ag nanoparticles and/or multi-wall carbon nanotubes (MWNTs). The optical transmittance of direct-patternable $SnO_2$ thin films decreased with introduction of nanomaterials due to optical absorption and optical scattering by Ag nanoparticles and MWNTs, respectively. The crystallinity of the $SnO_2$ thin films was not much affected by an incorporation of Ag nanoparticles and MWNTs. In the case of mixed incorporation with Ag nanoparticles and MWNTs, the sheet resistance of $SnO_2$ thin films decreased relative to incorporation of either single component. Valence band spectral analyses of the nano-hybridized $SnO_2$ thin films showed a relation between band structural change and electrical resistance. Direct-patterning of $SnO_2$ hybrid films with a line-width of 30 ${\mu}m$ was successfully performed without photoresist or dry etching. These results suggest that a micro-patterned system can be simply fabricated, and the electrical properties of $SnO_2$ films can be improved by incorporating Ag nanoparticles and MWNTs.