• 제목/요약/키워드: nanofluids

검색결과 160건 처리시간 0.032초

나노 유체(Nanofluids)의 열전도도 (Thermal Conductivities of Nanofluids)

  • 장석필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1388-1393
    • /
    • 2004
  • Investigators have been perplexed with the thermal phenomena behind the recently discovered nanofluids, fluids with unprecedented stability of suspended nanoparticles although huge difference in the density of nanoparticles and fluid. For example, nanofluids have anomalously high thermal conductivities at very low fraction, strongly temperature-dependent and size-dependent conductivities, and three-fold higher critical heat flux than that of base fluids. Traditional conductivity theories such as the Maxwell or other macroscale approaches cannot explain why nanofluids have these intriguing features. So in this paper, we devise a theoretical model that accounts for the fundamental role of dynamic nanoparticles in nanofluids. The proposed model not only captures the concentration and temperature-dependent conductivity, but also predicts strongly size-dependent conductivity. Furthermore, we physically explain the new phenomena for nanofluids. In addition, based on a proposed model, the effects of various parameters such as the ratio of thermal conductivity of nanofluids to that of a base fluid, volume fraction, nanoparticle size, and temperature on the thermal conductivities of nanofluids are investigated.

  • PDF

나노 유체(Nanofluids)의 열전도도 (Thermal Conductivities of Nanofluids)

  • 장석필
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.968-975
    • /
    • 2004
  • Nanofluids have anomalously high thermal conductivities at very low fraction, strongly temperature-dependent and size-dependent conductivities, and three-fold higher critical heat flux than that of base fluids. Traditional conductivity theories such as the Maxwell or other macroscale approaches cannot explain why nanofluids have these intriguing features. So in this paper, we devise a theoretical model that accounts for the fundamental role of dynamic nanoparticles in nanofluids. The proposed model not only captures the concentration and temperature-dependent conductivity, but also predicts strongly size-dependent conductivity. Furthermore, we physically explain the new phenomena for nanofluids. In addition, based on a proposed model, the effects of various parameters such as the ratio of thermal conductivity of nanofluids to that of a base fluid, volume fraction, nanoparticle size, and temperature on the thermal conductivities of nanofluids are investigated.

카본나노튜브 나노유체의 동점성계수 증가로 인한 관내 유동에서의 항력 감소 (Drag Reduction Induced by Increased Kinematic Viscosity of Nanofluids Containing Carbon Nanotubes in A Horizontal Tube)

  • 유지원;정세권;최만수
    • 한국입자에어로졸학회지
    • /
    • 제9권4호
    • /
    • pp.271-277
    • /
    • 2013
  • This article reports the drag reduction phenomenon of aqueous suspensions containing carbon nanotubes (CNTs) flowing through horizontal tubes. Stable nanofluids were prepared by using a surfactant. It is found that the drag forces of CNT nanofluids were reduced at specific flow conditions compared to the base fluid. It is found that the friction factor of CNT nanofluids was reduced up to approximately 30 % by using CNT nanofluids. Increased kinematic viscosities of CNT nanofluids are suggested to the key factors that cause the drag reduction phenomenon. In addition, transition from laminar to turbulent flow is observed to be delayed when CNT nanofluids flow in a horizontal tube, meaning that drag reduction occurs at higher flow rates, that is, at higher Reynolds numbers.

물-기반 금나노유체의 분산안정성이 열전도도에 미치는 영향 (The Effect of Suspension Stability on the Thermal Conductivity Enhancement of Water-based Au Nanofluids)

  • 최태종;김현진;이승현;박용준;장석필
    • 한국분무공학회지
    • /
    • 제21권2호
    • /
    • pp.111-115
    • /
    • 2016
  • This paper experimentally reports the effect of suspension stability on the thermal conductivity of water-based Au nanofluids. For this purpose, the water-based Au nanofluids are prepared by the one-step method called electro-chemical method with volume fraction of 0.0005%. The thermal conductivity of water-based Au nanofluids is measured from $22^{\circ}C$ to $42^{\circ}C$ using the transient hot wire method. To quantify the suspension stability of Au nanofluids, the suspension stability of nanofluids is evaluated using the in-house developed laser scattering system at a fixed wavelength of 632.8nm with the elapsed time. Based on the experimental results, the both thermal conductivity and suspension stability of water-based Au nanofluids are gradually decreased according to the time. These results experimentally show that the suspension stability of water-based Au nanofluids is the one of the important factor of thermal conductivity.

물/PG-기반 $Al_2O_3$ 나노유체를 적용한 수냉식 CPU 쿨러의 냉각성능 (Cooling Performance of Liquid CPU Cooler using Water/PG-based $Al_2O_3$ Nanofluids)

  • 박용준;김규한;이승현;장석필
    • 한국분무공학회지
    • /
    • 제19권1호
    • /
    • pp.19-24
    • /
    • 2014
  • In this study, the cooling performance of a liquid CPU cooler using the water/propylene glycol(PG)-based $Al_2O_3$ nanofluids is experimentally investigated. Water/PG-based $Al_2O_3$ nanofluids are manufactured by two-step method with ultrasonic energy for 10 hours. The volume fractions of the nanofluids are 0.25% and 0.35%. Thermal conductivity and viscosity of the nanofluids are measured to theoretically predict the thermal performance of the liquid CPU cooler using performance factor. Performance factor results indicate that the cooling performance of the liquid CPU cooler can be improved using the manufactured nanofluids. To evaluate the cooling performance of the liquid CPU cooler experimentally, temperature differences between ambient air and heater are measured for base fluid and nanofluids respectively. Based on the results, it is shown that performance of the liquid CPU cooler using $Al_2O_3$ nanofluids is improved maximum up to 8.6% at 0.25 Vol.%.

화학적 환원법으로 제작한 은나노유체의 흡광계수 (Extinction Coefficient of Ag Nanofluids Manufactured by Chemical Reduction Method)

  • 이승현;김현진;최태종;김수빈;강예준;김동진;장석필
    • 한국분무공학회지
    • /
    • 제20권1호
    • /
    • pp.53-58
    • /
    • 2015
  • In this study, we prepare the Ag nanofluids synthesized by the chemical reduction method and measure the extinction coefficient of those nanofluids at a wavelength of 632.8 nm. The Ag nanofluids are synthesized by the chemical reduction method using silver nitrate ($AgNO_3$) and sodium borohydride ($NaBH_4$) in water and ethylene glycol (EG). For stable dispersion of Ag particles in the base liquids, polyvinyl pyrrolidone (PVP) is added as a surfactant. The extinction coefficient of manufactured Ag nanofluids is measured by an in-house developed measurement system at the wavelength of 632.8 nm. The results show that the extinction coefficient of water-based and EG-based Ag nanofluids is linearly increased with respect to the particle loadings. Moreover, it is shown that the extinction coefficient of EG-based Ag nanofludis is higher than that of water-based Ag nanofluids. Finally we compare the experimental results with both the Maxwell-Garnett model and Rayleigh scattering approximation model, and they demonstrate that the Rayleigh scattering approximation model is reasonably predict the extinction coefficient of Ag nanofluids using hydraulic diameter of silver nanoparticle.

전기이중층에 의한 나노유체의 열전달율 향상 (Enhancement Thermal Conductivity of Nanofluids with Electric Double Layer (EDL))

  • 정정열;유정열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2160-2164
    • /
    • 2007
  • In this study, the mechanism of enhanced thermal conductivity is elucidated on the bases of both electric double layer (EDL) and kinetic theory. A novel expression for the thermal conductivity of nanofluids is proposed and verified by applying to $Al_2O_3$ nanofluids with regard to various temperatures, volume fractions and particle sizes. In dilute nanofluids, the effects of Brownian motion and particle interaction on enhancing the thermal conductivity of nanofluids are quite comparable while the effect of particle interaction due to EDL is more prominent in dense nanofluids. The model presented in this paper shows that particle interaction due to the electrical double layer is the most responsible for the enhancement of thermal conductivity of nanofluids.

  • PDF

나노유체의 수직유동 속에 놓인 가는 열선주위의 대류열전달계수 측정 (Measuring Convective Heat Transfer Coefficient Around a Heated Fine Wire in Cross Flow of Nanofluids)

  • 이신표
    • 대한기계학회논문집B
    • /
    • 제32권2호
    • /
    • pp.117-124
    • /
    • 2008
  • Recent researches on nanofluids have mainly focused on the increase of thermal conductivity of nanofluids under static condition. The ultimate goal of using nanofluids, however, is to enhance the heat transfer performance under fluid flow. So it has been highly necessary to devise a simple and accurate measuring apparatus which effectively compares the heat transfer capability between the base and nanofluids. Though the convective heat transfer coefficient is not the complete index for the heat transfer capability, it might be one of useful indications of heat transfer enhancement. In this article, the working principles of experimental system for convective heat transfer coefficient around a heated fine wire in cross flow of nanofluids and its application example to three samples of nano lubrication oils are explained in detail.

나노유체에 잠긴 가는 열선 주위의 자연대류 열전달 (Natural Convection Heat Transfer from a Heated Fine Wire in Nanofluids)

  • 이신표
    • 대한기계학회논문집B
    • /
    • 제31권9호
    • /
    • pp.807-813
    • /
    • 2007
  • Recent research on nanofluids under forced convection experiment shows that there is little relationship between convective heat transfer and thermal conductivity increase of nanofluids. This kind of new findings are totally different from the traditional theory of nanofluids, which says that the higher thermal conductivity is a prerequisite for convective heat transfer enhancement. To elucidate this controversial issue in a very comprehensible manner, simple natural convection experiment has been carried out for the water- and oil-based nanofluids. ($water-Al_2O_3$, transformer $oil-Al_2O_3$) Present research shows that there exists strong dependence between natural convection performance and thermal conductivity increase of nanofluids.

용액 플라즈마 공정을 이용하여 제조된 금 나노유체의 특성평가 (Synthesis and Characterization of Glold Nanofluid Prepared by the Solution Plasma Processing)

  • 허용강;이상율
    • 한국분말재료학회지
    • /
    • 제17권4호
    • /
    • pp.342-346
    • /
    • 2010
  • In the present work, water-based gold nanofluids were synthesized by the solution plasma processing (SPP). The size distribution and the shape of gold nanoparticles in the nanofluids were investigated using high resolution transmission electron microscopy (HR-TEM). The dispersion stability of gold nanofluids was characterized using zeta potential, as well. The thermal properties of gold nanofluids were measured by utilizing lambda measurement device. Nanofluids containing nanoparticles with $64.0{\pm}42.1\;nm{\sim}18.10{\pm}5.0\;nm$ in diameter were successfully synthesized. As diameter of nanoparticles decreased, dispersion stability of nanofluids increased and the enhanced ratio of thermal conductivity increased. The nanofluid with nanoparticles of $18.10\;{\pm}\;5.0\;nm$ in diameter showed approximately 3% improvement in thermal conductivity measurement and this could be due to the enhanced Brownian movement.