Browse > Article
http://dx.doi.org/10.15435/JILASSKR.2016.21.2.111

The Effect of Suspension Stability on the Thermal Conductivity Enhancement of Water-based Au Nanofluids  

Choi, Tae Jong (한국항공대학교 항공 우주 및 기계공학부)
Kim, Hyun Jin (국방기술품질원)
Lee, Seung-Hyun (한국항공대학교 항공 우주 및 기계공학부)
Park, Yong Jun (국방기술품질원)
Jang, Seok Pil (한국항공대학교 항공 우주 및 기계공학부)
Publication Information
Journal of ILASS-Korea / v.21, no.2, 2016 , pp. 111-115 More about this Journal
Abstract
This paper experimentally reports the effect of suspension stability on the thermal conductivity of water-based Au nanofluids. For this purpose, the water-based Au nanofluids are prepared by the one-step method called electro-chemical method with volume fraction of 0.0005%. The thermal conductivity of water-based Au nanofluids is measured from $22^{\circ}C$ to $42^{\circ}C$ using the transient hot wire method. To quantify the suspension stability of Au nanofluids, the suspension stability of nanofluids is evaluated using the in-house developed laser scattering system at a fixed wavelength of 632.8nm with the elapsed time. Based on the experimental results, the both thermal conductivity and suspension stability of water-based Au nanofluids are gradually decreased according to the time. These results experimentally show that the suspension stability of water-based Au nanofluids is the one of the important factor of thermal conductivity.
Keywords
Thermal Conductivity; Suspension Stability; Au Nanofluids; Temperature Dependency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Wang, X. Xu and S. U. S. Choi, "Thermal Conductivity of Nanoparticles-fluid Mixture", J. Thermophys. Heat Transfer, Vol. 13, 1999, pp. 474-480.   DOI
2 J. A. Eastman, S. U. S. Choi, S. Li, G. Soyez, L. J. Thompson and R. J. Dimelfi, "Novel Thermal Properties of Nanostructured Materials", Materials Science Forum, Vol. 312-314, 1999, pp. 629-634.   DOI
3 S. M. Peyghambarzadeh, S. H. Hashemabadi, M. Seifijamnani and S. M. Hoseini, "Improving the cooling performance of automobile radiator with $Al_2O_3$/water nanofluid", Applied Thermal Engineering, Vol. 31, Issue. 10, 2011, pp. 1833-1838.   DOI
4 S.-H. Lee and S. P. Jang, "Efficiency of a Volumetric Receiver Using Aqueous Suspensions of Multi-Walled Carbon Nanotubes for Absorbing Solar Thermal Energy", International Journal of Heat and Mass Transfer, Vol. 80, 2015, pp. 58-71.   DOI
5 H. J. Kim, S.-H. Lee, S. B. Kim and S. P. Jang, "The Effect of Nanoparticle Shape on the Thermal Resistance of a Flat-Plate Heat Pipe Using Acetone-Based $Al_2O_3$ Nanofluids", International Journal of Heat and Mass Transfer, Vol. 92, 2016, pp. 572-577.   DOI
6 T. Yuamsawasd, A. S. Dalkilic and S. Wongwisesa, "Measurement of the thermal conductivity of titania and alumina nanofluids", Thermochim Acta, Vol. 545, 2012, pp. 48-56.   DOI
7 J. A. Eastman, S. U. S. Choi, S. Li, L. J. Thompson and S. Lee, "Enhanced thermal conductivity through the development of nanofluids. In: Proceedings of the Symposium on Nanophase and Nanocomposite Materials II", Boston Vol. 457, 1997, pp. 3-11.
8 S. P. Jang and S. U. S. Choi, "Effects of various parameters on nanofluid thermal conductivity", J. Heat Trans.-ASME, Vol. 129, 2007, pp. 617-623.
9 S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke, "Anomalous thermal conductivity enhancement in nanotube suspensions", Appl. Phys. Lett., Vol. 79, 2001, pp. 2252-2254.   DOI
10 C. H. Chon, K. D. Kihm, S. P. Lee and S. U. S. Choi, "Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid ($Al_2O_3$) Thermal Conductivity Enhancement", Appl. Phys. Lett., Vol. 87, 2005, pp. 153107-1-3.   DOI
11 J.-H. Lee, S.-H. Lee and S. P. Jang, "Do Temperature and Nanoparticle Size Affect the Thermal Conductivity of Alumina Nanofluids?", Appl. Phys. Lett., Vol. 104, 2014, pp. 161908.   DOI
12 M.-S. Liu, M.C.-C. Lin, C. Y. Tsai and C.-C. Wang, "Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method", Int. J. Heat Mass Tran., Vol. 49, 2006, pp. 3028-3033.   DOI
13 K. S. Hong, T.-K. Hong and H.-S. Yanga, "Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles", Appl. Phys. Lett., Vol. 88, 2006, pp. 031901.   DOI
14 H. J. Kim, S.-H. Lee, J.-H. Lee and S. P. Jang, "Effect of particle shape on suspension stability and thermal conductivities of water-based bohemite alumina nanofluids", Energy, Vol. 90, 2015, pp. 1290-1297.   DOI
15 W. A. Wakeham, A. Nagashima and J. V. Sengers, "Measurement of the transport properties of fluids", Blackwell Science, 1991, London, Chap. 7.
16 R. H. Muller, G. E. Hildebrand, R. Nitzche and B. R. Paulke, "Zetapotential und Partikelladung in der Laborpraxis", Wissenschaftliche Verlagsgesellschaft, 1st Ed., 1996, Stuttgart.
17 B. C. Pak and Y. I. Cho, "Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles", Experimental Heat Transfer an International Journal, Vol. 11, 1998, pp. 151-170.   DOI
18 S. U. S. Choi and J. A. Eastman, "Enhancing Thermal Conductivity of Fluids with Nanoparticles", ASMEPublications-FED, Vol. 231, 1995, pp. 99-105.
19 S. Lee, S. U. S. Choi, S. Li and J. A. Eastman, "Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles", ASME J. Heat Transfer, Vol. 121, 1999, pp. 280-290.   DOI