• 제목/요약/키워드: nanofibrillated cellulose

검색결과 10건 처리시간 0.017초

Effects of electron beam treatment on cotton linter for the preparation of nanofibrillated cellulose

  • Le, Van Hai;Seo, Yung Bum
    • 펄프종이기술
    • /
    • 제48권2호
    • /
    • pp.68-74
    • /
    • 2016
  • Nanofibrillated cellulose (NFC) was prepared from cotton linter after electron beam irradiation to investigate its effects on the manufacturing efficiency of the NFC preparation and the property changes by the treatment. Mechanical device (Super Masscolloider) was used to prepare the NFC and its passing frequency for each NFC preparation was recorded. More electron beam irradiation resulted in less passing frequency. Alpha cellulose content, molecular weight, crystallinity index, and thermal decomposition behavior of each treatment were lowered by electron beam treatment (10 and 100 kGy) and grinding process. NFC films were prepared to investigate their mechanical properties. There were little changes in tensile properties of the NFC films.

그라인딩 처리 횟수에 따른 나노피브릴화 셀룰로오스 매트의 공극 특성 (Effect of the Number of Passes through Grinder on the Pore Characteristics of Nanofibrillated Cellulose Mat)

  • 심규정;류재호;윤혜정
    • 펄프종이기술
    • /
    • 제45권1호
    • /
    • pp.35-41
    • /
    • 2013
  • In this study, we investigated the effect of the number of passes through agrinder on the pore characteristics of nanofibrillated cellulose (NFC) mat. The beaten pulp suspension was used to make NFC suspension using a grinder. To evaluate the pore characteristics of a NFC mat, the surface morphology of the dried NFC mat was observed with FE-SEM and the specific surface area was analyzed with BET nitrogen gas adsorption. The structure of NFC mat was changed with the different number of passes and drying methods. The specific surface area of NFC mat increased with the increase in the number of passes. The 20-passed NFC mat had 20 times larger specific surface area ($141m^2/g$) compared to the 0-passed NFC mat. The specific surface area was strongly correlated with the average pore size in NFC mat. The average pore diameter in NFC mat was calculated from the gas sorption isotherms using BJH model. The value was 13 - 15 nm, indicating that the NFC mat had mesoporous structure.

LbL 다층흡착에 의한 나노피브릴화 셀룰로오스의 표면 개질과 현탁액의 탈수성에 미치는 영향 (Surface Modification of Nanofibrillated Cellulose by LbL (Layer-by-Layer) Multilayering and its Effect on the Dewatering Ability of Suspension)

  • 심규정;윤혜정;안정언;이제곤;이혜윤;조연희
    • 펄프종이기술
    • /
    • 제46권1호
    • /
    • pp.46-55
    • /
    • 2014
  • In this study, we modified the surface of nanofibrillated cellulose (NFC) through LbL (Layer-by-Layer) multilayering process with polyelectrolytes and investigated the effects of the NFC modification on the charge of NFC surface and the dewatering ability of NFC suspension. The multilayering process was done onto NFC fibers using polydiallyldimethylammonium chloride (PDADMAC) and poly-sodium 4-styrene sulfonate (PSS) under different dosage and washing conditions. When the washing was carried out in every adsorption stage, the modified NFC had strong cationic or anionic charge depending on the type of polyelectrolyte in the outermost layer and the dewatering ability was not affected. In the case of no washing treatment or washing in the final adsorption stage, however, the zeta potential of NFC was close to an isoelectric point so that the dewatering ability increased remarkably. Low addition level of polyelectrolytes also showed the similar results. The mixing of NFC suspensions with opposite charge resulted in higher network strength and improved dewatering ability due to the flocculation.

전자현미경을 이용한 나노셀룰로오스 물질의 형태학적 특성 분석 연구 (Electron Microscopy for the Morphological Characterization of Nanocellulose Materials)

  • 권오경;신수정
    • 펄프종이기술
    • /
    • 제48권1호
    • /
    • pp.5-18
    • /
    • 2016
  • Electron microscopy is an important investigation and analytical method for the morphological characterization of various cellulosic materials, such as micro-crystalline cellulose (MCC), microfibrillated cellulose (MFC), nanofibrillated cellulose (NFC), and cellulose nanocrystals (CNC). However, more accurate morphological analysis requires high-quality micrographs acquired from the proper use of an electron microscope and associated sample preparation methods. Understanding the interaction of electron and matter as well as the importance of sample preparation methods, including drying and staining methods, enables the production of high quality images with adequate information on the nanocellulosic materials. This paper provides a brief overview of the micro and nano structural analysis of cellulose, as investigated using transmission and scanning electron microscopy.

Enzyme beating 전처리를 통한 Micro-Fibrillated Cellulose 제조 및 지력증강 효과 (Micro-Fibrillated Cellulose Preparation with Enzyme Beating Pretreatment and Effect on Paper Strength Improvement)

  • 안은별;홍성범;김강재;엄태진
    • 펄프종이기술
    • /
    • 제47권6호
    • /
    • pp.57-65
    • /
    • 2015
  • Microfibrillated cellulose (MFC) or Nanofibrillated cellulose (NFC) has been used to reduce the use of raw pulp and to improve paper strength. The problem of MFC preparation is high manufacturing cost. In this study, it was carried out to prepare MFC after enzyme beating and estimated properties of MFC. Endo-D was the best beating efficiency among three type of endo-glucanase. As the grinder pass number increased, the viscosity and the fines of MFC suspension increased while the crystallinity and the porosity of MFC sheet decreased. Also enzyme beating MFC was higher value in the crystallinity and lower value in the viscosity than non-enzyme MFC. In addition, the aspect ratio of MFC was the highest at 5 pass. MFC addition improved the handsheet strength and the air permeability but worsened the drainage.

Engineering Cellulose Fibers for High-Value Added Products for Pulp & Paper Industry

  • Ko, Young Chan;Park, Jong-Moon
    • 펄프종이기술
    • /
    • 제47권6호
    • /
    • pp.22-40
    • /
    • 2015
  • Cellulose fibers is one of the most abundant in nature. It has many distinctive features: abundant in nature, biodegradable, non-toxic, eco-friendly, sustainable, easy to fabricate, hydrophilic, and cost-effective. Cellulose fibers, known as pulp, is produced from cellulose-containing materials by the pulping process. As the raw material, wood has been most commonly used while recycled pulp has been also used to some degree. Thus, pulp usually refers to wood pulp. Generally, the pulp and paper industry is regarded as the commodity market where the cost should be much more important than the quality. It also belongs to a mature market where the growth is slow, or even in decline. Accordingly, technological development has been rather stagnant for the industry. Recently, however, the pulp and paper industry has faced very serious challenges. First, due to digital technology, there has been a steady decline in the need for pulp and paper products. The digital industry has continuously replaced printed products such as books, newspapers, and magazines. Second, there has been a trend initiated by developed countries to limit the use of wood as the raw material for the sake of environmental protection. This forces the industry to find a more efficient use of wood pulp as well as finding alternative, non-wood sources. Third, as an individual becomes wealthier and more conscious of health-care, the quality of a product becomes more important than the cost. Thus, a paradigm shift is needed from the cost-conscientious to the quality conscientious. The objective of this article is to review the technologies aimed at engineering cellulose fibers for producing high-value added paper products.

펄프의 전처리 및 그라인더 간격이 MFC 제조 특성에 미치는 영향 (Effects of Pulp Pre-treatment and Grinder Clearance on the Manufacturing Characteristics of Microfibrillated Cellulose)

  • 용성문;곽건호;조병욱;이용규;원종명
    • 펄프종이기술
    • /
    • 제47권2호
    • /
    • pp.61-69
    • /
    • 2015
  • A number of researches have been carried out regarding the utilization of nanocellulose(crystalline nanocellulose, microfibrillated cellulose, nanofibrillated cellulose) for the manufacture of various kinds of composites and functional products. However, only few research works on the manufacturing characteristics of nanocellulose could be found, although some companies started already the production of nanocellulose in commercial scale. However, the most important thing in commercializing of production and utilization of nanocellulose is to develop the economical and efficient process. Thus, this study was carried out in order to investigate the effects of refining, alkaline pre-treatment and grinder clearance on the characteristics of microfibrillated cellulose and energy consumption. There was no significant differences in crystalline index with the degree of microfibrillation. The initial fibrillation could be improved by refining pre-treatment, but its effect was not observed anymore since the fibrillation was done up to certain level by grinding. Refining pre-treatment did not improved the energy efficiency. Alkaline pre-treatment can be helpful because the swelling of pulp fiber will facilitate fibrillation. It was found that the decrease in grinder clearance was helpful to improve the energy efficiency.