• Title/Summary/Keyword: nanofiber structure

Search Result 89, Processing Time 0.027 seconds

Electrochemical Performance of Lithium Iron Phosphate by Adding Graphite Nanofiber for Lithium Ion Batteries

  • Wang, Wan Lin;Jin, En Mei;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.121-124
    • /
    • 2012
  • Olivine type $LiFePO_4$ cathode material was synthesized by solid-state reaction method including one-step heat treatment. To improve the electrochemical characteristics, graphite nanofiber (GNF) was added into $LiFePO_4$ cathode material. The structure and morphological performance of $LiFePO_4$ were investigated by X-ray diffraction (XRD); and a field emission-scanning electron microscope (FE-SEM). The synthesized $LiFePO_4$ has an olivine structure with no impurity, and the average particle size of $LiFePO_4$ is about 200~300 nm. With graphite nanofiber added, the discharge capacity increased from 113.43 mAh/g to 155.63 mAh/g at a current density of 0.1 $mA/cm^2$. The resistance was also significantly decreased by the added graphite nanofiber.

Fabrication of Methanol Sensors Using Conductive Polypyrrole Nanofibers with a Core-Shell Structure (코아-셀 구조를 가지는 전도성 폴리피롤 나노섬유를 이용한 메탄올 센서 제작)

  • Jun, Tae-Sun;Lee, Sungho;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.383-387
    • /
    • 2014
  • Electrically conductive polypyrrole-polyvinylpyrrolidone (PPy-PVP) nanofiber mats with a core-shell structure have been successfully fabricated by a two-step process: the formation of FeCl3-containing PVP nanofiber mat by electrospinning, and the vapor-phase polymerization (VPP) of pyrrole monomer on the mat in a sealed chamber at room temperature. Surface morphology and chemical composition of the PPy-PVP mat were characterized by SEM, EDX and FTIR analyses. The as-prepared nonwoven mat was composed of PPy-PVP nanofibers with an average diameter of 300 nm. The sheet conductivity of the nanofiber mat was measured to be approximately 0.01 S/cm by a four-point probe. We have also investigated gas-sensing properties of PPy-PVP nanofiber mat upon exposure to methanol vapor. The PPy-PVP nanofiber sensors were observed to have excellent methanol-sensing performance. The nanofiber-based core-shell nanostructure could give an opportunity to fabricate a highly sensitive and fast response sensor due to its high surfaceto-volume ratio.

Changes in Waterproofness and Breathability after Repeated Laundering and Durability of Electrospun Nanofiber Web Laminates (전기방사한 나노섬유 웹 라미네이트 소재의 반복 세탁에 따른 투습방수 성능 변화 및 내구성)

  • Lee, Kyung;Yoon, Bo-Ram;Lee, Seung-Sin
    • Fashion & Textile Research Journal
    • /
    • v.14 no.1
    • /
    • pp.122-129
    • /
    • 2012
  • To develop a waterproof breathable material, we fabricated three kinds of nanofiber web laminates using a massproduced electrospun nanofiber web with different substrates and layer structures. The waterproofness and breathability of nanofiber web laminates were evaluated after repeated launderings and compared with those of conventional waterproof breathable fabrics currently in use, including densely woven fabric, microporous membrane laminated fabric, and coated fabric. The durability of nanofiber web laminates, including adhesion strength, abrasion resistance, tensile strength, and tearing strength, was also assessed and compared with those of conventional waterproof breathable fabrics. The water vapor transmission of nanofiber web laminates increased slightly after repeated launderings, whereas the air permeability somewhat decreased after launderings but still maintained an acceptable level of air permeability. Laundering reduced the resistance to water penetration of nanofiber web laminates, which implies that laminating techniques or substrate materials that could support waterproofness of the laminated structure should be explored. The adhesion strength, abrasion resistance, tensile strength, and tearing strength of nanofiber web laminates were in a range comparable to conventional waterproof breathable materials.

Fabrication of Polypyrrole Deposited Poly (vinyl alcohol) Nanofiber Webs by Dip-coating and In situ Polymerization and their Application to Textile Electrode Sensors (Polypyrrole을 증착시킨 Poly(vinyl alcohol) 나노섬유 제조 및 전극용 텍스타일 센서로의 활용 가능성 탐색 -딥 코팅과 현장중합 증착 방식을 중심으로-)

  • Yang, Hyukjoo;Kim, Jaehyun;Lee, Seungsin;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.22 no.3
    • /
    • pp.386-398
    • /
    • 2020
  • This study compared dip-coating and in situ polymerization methods for the development of nanofiber-based E-textile using polypyrrole. Nanofiber webs were fabricated by electrospinning an aqueous poly (vinyl alcohol) (PVA) solution. Subsequently, the PVA nanofiber web underwent thermal treatment to improve water resistance. Dip-coating and in situ polymerization methods were used to deposit polypyrrole on the surfaces of the nanofiber web. An FE-SEM analysis was also conducted to examine specimen surface characteristics along with EDS and FT-IR that analyzed the chemical bonding between polypyrrole and specimens. The line resistance and sheet resistance of the treated specimens were measured. Finally, an electrocardiogram (ECG) was measured with textile sensors made of the polypyrrole-deposited PVA nanofiber webs. The polypyrrole-deposited PVA nanofiber webs fabricated by dip-coating dissolved in the dip-coating solution and indicated damage to the nanofibers. However, in the case of in situ polymerization, polypyrrole nanoparticles were deposited on the surface and inter-web structure of the PVA nanofiber web. The resistance measurements indicated that polypyrrole-deposited PVA nanofiber webs fabricated by in situ polymerization with an average sheet resistance of 5.3 k(Ω/□). Polypyrrole-deposited PVA nanofiber webs fabricated by dip-coating showed an average sheet resistance of 57.3 k(Ω/□). Polypyrrole-deposited PVA nanofibers fabricated by in situ polymerization showed a lower line and sheet resistance; in addition, they detected the electrical activity of the heart during ECG measurements. The electrodes made from polypyrrole-deposited PVA nanofiber webs by in situ polymerization showed the best performance for sensing ECG signals among the evaluated specimens.

Fabrication of Mesoporous Carbon Nanofibers for Electrical Double-Layer Capacitors (전기 이중층 커패시터용 메조 다공성 탄소 나노섬유의 제조)

  • Lee, Do-Young;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.617-623
    • /
    • 2017
  • Mesoporous carbon nanofibers as electrode material for electrical double-layer capacitors(EDLCs) are fabricated using the electrospinning method and carbonization. Their morphologies, structures, chemical bonding states, porous structure, and electrochemical performance are investigated. The optimized mesoporous carbon nanofiber has a high sepecific surface area of $667m^2\;g^{-1}$, high average pore size of 6.3 nm, and high mesopore volume fraction of 80 %, as well as a unifom network structure consiting of a 1-D nanofiber stucture. The optimized mesoporous carbon nanofiber shows outstanding electrochemical performance with high specific capacitance of $87F\;g^{-1}$ at a current density of $0.1A\;g^{-1}$, high-rate performance ($72F\;g^{-1}$ at a current density of $20.0A\;g^{-1}$), and good cycling stability ($92F\;g^{-1}$ after 100 cycles). The improvement of the electrochemical performance via the combined effects of high specific surface area are due to the high mesopore volume fraction of the carbon nanofibers.

Electrochemical Behavior of Well-dispersed Catalysts on Ruthenium Oxide Nanofiber Supports (루테늄 산화물 나노 섬유 지지체에 담지된 고 분산성 촉매의 전기화학적 거동)

  • An, Geon-Hyoung;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.96-101
    • /
    • 2017
  • Well-dispersed platinum catalysts on ruthenium oxide nanofiber supports are fabricated using electrospinning, post-calcination, and reduction methods. To obtain the well-dispersed platinum catalysts, the surface of the nanofiber supports is modified using post-calcination. The structures, morphologies, crystal structures, chemical bonding energies, and electrochemical performance of the catalysts are investigated. The optimized catalysts show well-dispersed platinum nanoparticles (1-2 nm) on the nanofiber supports as well as a uniform network structure. In particular, the well-dispersed platinum catalysts on the ruthenium oxide nanofiber supports display excellent catalytic activity for oxygen reduction reactions with a half-wave potential ($E_{1/2}$) of 0.57 V and outstanding long-term stability after 2000 cycles, resulting in a lower $E_{1/2}$ potential degradation of 19 mV. The enhanced electrochemical performance for oxygen reduction reactions results from the well-dispersed platinum catalysts and unique nanofiber supports.

Characterization of nano-fiber web structures using a morphological image processing

  • Kim, Jooyong;Lee, Jung-Hae
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.100-100
    • /
    • 2003
  • An image processing algorithm has been developed in order to analyze the nanofiber web images obtained from a high magnification microscope. It has been known that precise pore detection on thick webs is extremely difficult mainly due to lack of light uniformity, difficulty of fine focusing and translucency of nanofiber web. The pore detection algorithm developed has been found to show excellent performance in characterizing the porous structure, thus being a promising tool for on-line quality control system under mass production. Since the images obtained from an optical microscope represent only web surface, a scale factor has been introduced to estimate the web structure as a whole. Resulting web structures have been compared to those by mercury porosimetry, especially in pore size distribution. It has been shown that those two structures have a strong correlation, indicating that scaling of a single layer web structure can be an effective way of estimating the structure of thick fiber webs.

  • PDF

Seismic response of concrete columns with nanofiber reinforced polymer layer

  • Motezaker, Mohsen;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.20 no.3
    • /
    • pp.361-368
    • /
    • 2017
  • Seismic response of the concrete column covered by nanofiber reinforced polymer (NFRP) layer is investigated. The concrete column is studied in this paper. The column is modeled using sinusoidal shear deformation beam theory (SSDT). Mori-Tanaka model is used for obtaining the effective material properties of the NFRP layer considering agglomeration effects. Using the nonlinear strain-displacement relations, stress-strain relations and Hamilton's principle, the motion equations are derived. Harmonic differential quadrature method (HDQM) along with Newmark method is utilized to obtain the dynamic response of the structure. The effects of different parameters such as NFRP layer, geometrical parameters of column, volume fraction and agglomeration of nanofibers and boundary conditions on the dynamic response of the structure are shown. The results indicated that applied NFRP layer decreases the maximum dynamic displacement of the structure. In addition, using nanofibersas reinforcement leads a reduction in the maximum dynamic displacement of the structure.

Fabrication of a Superhydrophobic Water-Repellent Mesh for Underwater Sensors

  • An, Taechang
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.100-104
    • /
    • 2013
  • A superhydrophobic mesh is a unique structure that blocks water, while allowing gases, sound waves, and energy to pass through the holes in the mesh. This mesh is used in various devices, such as gas- and energy-permeable waterproof membranes for underwater sensors and electronic devices. However, it is difficult to fabricate micro- and nano-structures on three-dimensional surfaces, such as the cylindrical surface of a wire mesh. In this research, we successfully produced a superhydrophobic water-repellent mesh with a high contact angle (> $150^{\circ}$) for nanofibrous structures. Conducting polymer (CP) composite nanofibers were evenly coated on a stainless steel mesh surface, to create a superhydrophobic mesh with a pore size of $100{\mu}m$. The nanofiber structure could be controlled by the deposition time. As the deposition time increased, a high-density, hierarchical nanofiber structure was deposited on the mesh. The mesh surface was then coated with Teflon, to reduce the surface energy. The fabricated mesh had a static water contact angle of $163^{\circ}$, and a water-pressure resistance of 1.92 kPa.

Characterization of Nanostructure and Electronic Properties of Catalytically Grown Carbon Nanofiber (촉매법으로 제조한 나노탄소섬유의 미세구조 및 전기적 특성 제어 연구)

  • 김명수;우원준;송희석;임연수;이재춘
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.345-353
    • /
    • 2000
  • Carbon nanofibers were prepared from the decomposition of various carbon-containing gases over pure Ni, pure Fe and their alloys with Cu. They yields, properties, and structure of carbon nanofibers obtained from the various reaction conditions were analyzed. Type of reacting gas, reaction temperature and catalyst composition were changed as the reaction variable. With Ni-Cu catalysts, the maximum yields of carbon nanofibers were obtained at temperatures between 550 and 650$^{\circ}C$ according to the reacting gas mixtures of C2H2-H2, C2H4-H2 and C3H8-H2, and the surface areas of the carbon nanofibers produced were 20∼350㎡/g. In the case of CO-H2 mixture, the rapid deposition of carbon nanofibers occurred with Fe-Cu catalyst and the maximum yield were obtained around 550$^{\circ}C$ with the range of surface areas of 140∼170㎡/g. The electrical resistivity of carbon nanofiber regarded as the key property of filler for the application of electromagnetic interference shielding was very sensitive to the type of reactant gas and the catalyst composition ranging 0.07∼1.5Ωcm at a pressure of 10000 psi, and the resistivity of carbon nanofibers produced over pure nickel catalyst were lower than those over alloy catalysts. SEM observation showed that the carbon nanofibers produced had the diameters ranging 20∼300 nm and the straight structure of carbon nanofibers changed into the twisted or helical conformation by the variation of reacting gas and catalyst composition.

  • PDF