Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.2.96

Electrochemical Behavior of Well-dispersed Catalysts on Ruthenium Oxide Nanofiber Supports  

An, Geon-Hyoung (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
Ahn, Hyo-Jin (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.24, no.2, 2017 , pp. 96-101 More about this Journal
Abstract
Well-dispersed platinum catalysts on ruthenium oxide nanofiber supports are fabricated using electrospinning, post-calcination, and reduction methods. To obtain the well-dispersed platinum catalysts, the surface of the nanofiber supports is modified using post-calcination. The structures, morphologies, crystal structures, chemical bonding energies, and electrochemical performance of the catalysts are investigated. The optimized catalysts show well-dispersed platinum nanoparticles (1-2 nm) on the nanofiber supports as well as a uniform network structure. In particular, the well-dispersed platinum catalysts on the ruthenium oxide nanofiber supports display excellent catalytic activity for oxygen reduction reactions with a half-wave potential ($E_{1/2}$) of 0.57 V and outstanding long-term stability after 2000 cycles, resulting in a lower $E_{1/2}$ potential degradation of 19 mV. The enhanced electrochemical performance for oxygen reduction reactions results from the well-dispersed platinum catalysts and unique nanofiber supports.
Keywords
Oxygen-reduction reaction; Catalysts; Platinum; Nanofiber;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 M. Lefevre, E. Proietti, F. Jaouen and J. P. Dodelet: Science, 324 (2009) 71.   DOI
2 G. H. An, E. H. Lee and H. J. Ahn: J. Korean Powder Metall. Inst., 23 (2016) 420.
3 G. H. An and H. J. Ahn: Kor. J. Mater. Res., 22 (2012) 421.   DOI
4 M. K. Jeon, C. H. Lee, G. I. Park and K. H. Kang: J. Power Sources, 216 (2012) 400.   DOI
5 K. Gong, F. Du, Z. Xia, M. Durstock and L. Dai: Science, 323 (2009) 760.   DOI
6 G. H. An and H. J. Ahn: J. Electroanal. Chem., 707 (2013) 74.   DOI
7 G. H. An, E. H. Lee and H. J. Ahn: J. Alloys Compd., 682 (2016) 746.   DOI
8 G. H. An, E. H. Lee and H. J. Ahn: Phys. Chem. Chem. Phys., 18 (2016) 14859.   DOI
9 G. H. An and H. J. Ahn: Kor. J. Mater. Res., 23 (2013) 143.   DOI
10 D. Y. Sin G. H. An and H. J. Ahn: J. Korean Powder Metall. Inst., 22 (2015) 350.   DOI
11 B. R. Koo, G. H. An and H. J. Ahn: J. Korean Powder Metall. Inst., 21 (2014) 108.   DOI
12 D. Y. Sin, G. H. An and H. J. Ahn: Kor. J. Mater. Res., 25 (2015) 113.   DOI
13 H. R. An, G. H. An and H. J. Ahn: Kor. J. Mater. Res., 26 (2016) 250.   DOI
14 G. H. An and H. J. Ahn: J. Electroanal. Chem., 707 (2013) 74.   DOI
15 G. H. An and H. J. Ahn: J. Electroanal. Chem., 744 (2015) 32.   DOI