• Title/Summary/Keyword: nanobiotechnology

Search Result 55, Processing Time 0.029 seconds

NanoBio-Technology for Practical Implementation in Drug Discovery

  • Min, Dal-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.83-83
    • /
    • 2013
  • To date, various nanobiotechnologicalapproaches for biosensors and drug development have been explosively studied. Despite of successful demonstrations, the new technologies hardly enjoyed routine applications in practical nanobiomedicine. Here, researchers trained at the interface of basic sciences and engineering are expected to play critical roles. In this tutorial, I will introduce recent studies which harness graphene derivatives for developing bioanalytical platforms to quantitatively analyze various enzyme activities and biomarkers. The systems rely on attractive interaction between graphene oxide and nucleic acids or phospholipids. Recently, one of the graphene-based bioassay system was applied to anti-viral drug screening and potent hit compounds were identified to treat hepatitis C. This study clearly shows that a new nanobio-technology can be routinely implemented in drug discovery, providing many advantages over conventional methods.

  • PDF

Biochemical Application of IgG Fc-binding peptide: From Biochip to Targeted Nano Carrier

  • Chung, Sang Jeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.84-84
    • /
    • 2013
  • FcBP consisting of 13 amino acids specifically binds to Immunoglobulin G Fc domain. Initially, we utilized this peptide for preparation of antibody chip as a PEG composite for enhanced solubility. After then, the peptide conjugate was immobilized on agarose resin, resulting in highly efficient affinity column for antibody purification. The efficiency was comparable to commercial Protein A column. Recently, this peptide was conjugated with cell penetratingpeptide (CPP) on a backbone of GFP, affording antibody transducer, which carries antibody into live cells by simple mixing of antibody and the transducer in cell culture media. Antibody transduction into cells was monitored by live cell imaging. More recently, the FcBP was fused to ferritin cage, which consists of 24 ferritin protein molecules. The FcBP-ferritin cage showed greatly increased binding affinity to human IgG. Its binding was analyzed by QCM and SPR analysis. Finally, it was selectively delivered by Herceptin to SKBR3, a breast cancer cell, over MCF10A, non-tumorigenic cells.

  • PDF

Emerging Frontiers of Graphene in Biomedicine

  • Byun, Jonghoe
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.145-151
    • /
    • 2015
  • Graphene is a next-generation biomaterial with increasing biomedical applicability. As a new class of one-atom-thick nanosheets, it is a true two-dimensional honeycomb network nanomaterial that attracts interest in various scientific fields and is rapidly becoming the most widely studied carbon-based material. Since its discovery in 2004, its unique optical, mechanical, electronic, thermal, and magnetic properties are the basis of exploration of the potential applicability of graphene. Graphene materials, such as graphene oxide and its reduced form, are studied extensively in the biotechnology arena owing to their multivalent functionalization and efficient surface loading with various biomolecules. This review provides a brief summary of the recent progress in graphene and graphene oxide biological research together with current findings to spark novel applications in biomedicine. Graphene-based applications are progressively developing; hence, the opportunities and challenges of this rapidly growing field are discussed together with the versatility of these multifaceted materials.

Can animals too negotiate nano transformations?

  • Jha, Anal K.;Prasad, K.
    • Advances in nano research
    • /
    • v.1 no.1
    • /
    • pp.35-42
    • /
    • 2013
  • Cockroach (Periplaneta americana) broth has been employed to assess its potential as a candidate source animal tissue for the synthesis of gold nanoparticles. The synthesis is performed akin to room temperature in the laboratory ambience. X-ray and transmission electron microscopy analyses are performed to ascertain the formation of nanoparticles. The synthesis of nanoparticles might have resulted due to the activity of chitin, metallothioneine and tropomyosin. A possible involved mechanism for the biosynthesis of nanoparticles has also been proposed. This work further indicates that the animal wastes too can effectively participate in nano-transformations thereby helping in controlling the environmental pollution and subsequently the different diseases.

Glutaraldehyde-Mediated Synthesis of Asparaginase-Bound Maghemite Nanocomposites: Cytotoxicity against Human Colon Adenocarcinoma Cells

  • Baskar, G;George, Garrick Bikku
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4237-4240
    • /
    • 2016
  • Drugs processed using nanobiotechnology may be more biocompatible, with sustainable and stabilised release or action. L-asparaginase produced from fungi has many advantages for treatment of lymphocytic leukemia with lesser side effect. In the present work, maghemite nanobiocomposites of fungal asparaginase were produced using glutaraldehyde-pretreated colloidal magnetic nanoparticles. Formation of nanobiocomposites was observed using laser light scattering and confirmed by UV-visible spectrophotometry with the absorption peak at 497 nm. The specific asparaginase activity was increased from 320 U/mg with crude asparaginase to 481.5 U/mg. FTIR analysis confirmed that primary amines are the functional groups involved in binding of asparaginase on magnetic nanoparticles. The average size of the produced nanobiocomposite was found in the range of 30 nm to 40 nm using histogram analysis. The magnetic nanobiocomposite of asparaginase synthesised using glutaraldehyde showed 90.75% cytotoxicity against human colon adenocarcinoma cell lines. Hence it can be used as an active anticancer drug with an augmented level of bioavailability.

Highly Efficient Encapsulation of Anionic Small Molecules in Asymmetric Liposome Particles

  • Lee, Myung Kyu
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.284-288
    • /
    • 2015
  • Anionic small molecules are hard to penetrate the cell membranes because of their negative charges. Encapsulation of small molecules into liposome particles can provide target specific delivery of them. In our previous study, siRNA could be efficiently encapsulated into liposome particles using an asymmetric preparation method of liposomes. In this study, the same method was applied for encapsulation of small anionic fluorescent chemicals such as calcein and indocyanine green (ICG). More than 90% fluorescent chemicals were encapsulated in the asymmetric liposome particles (ALPs). No intracellular fluorescent signal was observed in the tumor cells treated with the unmodified calcein/ALPs and ICG/ALPs, whereas the surface modification with a cell-penetrating polyarginine peptide (R8 or R12) allows cellular uptake of the ALPs. The results demonstrate that the ALPs encapsulating small anionic drugs will be useful for target-specific delivery after modification of target-specific ligands.

The use of nanotechnology in the agriculture

  • Cicek, Semra;Nadaroglu, Hayrunnisa
    • Advances in nano research
    • /
    • v.3 no.4
    • /
    • pp.207-223
    • /
    • 2015
  • Nanotechnology is considered the most important technological advancement in recent years, and it is utilized in all industries due to its potential applications. Almost all of the industries (food, agriculture, medicine, automotive, information and communication technologies, energy, textile, construction, etc.) reorganize their future in the light of nanotechnological developments. As the most important source of income of countries, the agriculture industry increases the use of nanotechnology products gradually as a solution to the problems encountered. Reducing the use of agricultural inputs (pesticides, herbicides, fertilizers, etc.) by increasing their efficiency utilizing nano-carriers, detecting the environmental conditions and development of the crops in the field simultaneously by making use of nanosensors, reducing the sample volume and the amount of analyte used thanks to nanoarrays, effective treatment of water resources through nano-filters, accelerating the development of crops by using nanoparticles are the prominent nanotechnological applications in the agriculture industry. This review presents information on the benefits of the recent developments in nanotechnology applications in the agriculture industry.

Nanoparticle-based Detection Technology for DNA Analysis

  • Park, Hyun-Gyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.4
    • /
    • pp.221-226
    • /
    • 2003
  • With the current rapid development of nanotechnology and synthesis technology for designed oligonucleotides or oligonucleotide-modified nanoparticle conjugates, the combined strategies have become one of the most valuable methods in detection technology for DNA analysis. Using the uniquely recognizable interactions of pre-designed DNA molecules in assembling nanoparticles, various novel approaches have been recently developed towards detecting specific DNA sequences. Here we describe the key fundamentals and issues of this promising strategies ranging from the initial findings of rationally designed DNA-based assembly of nanoparticles to the extended chip-based detection system. Some limitations of these new strategies and possible approaches will be also discussed for the practical application in the area of DNA microarray detection.

Affinity Separations Using Microfabricated Microfluidic Devices: In Situ Photopolymerization and Use in Protein Separations

  • Chen Li;Lee, Wen-Chien;Lee, Kelvin H.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.4
    • /
    • pp.240-245
    • /
    • 2003
  • The use of microfabricated microfluidic devices offers significant advantages over current technologies including fast analysis time and small reagent requirements. In the context of proteomic research, the possibility of using affinity-based separations for prefractionation of samples using microfluidic devices has significant potential. We demonstrate the use of microscale devices to achieve affinity separations of proteins using a device fabricated from borosilicate glass wafers. Photolithography and wet etching are used to pattern individual glass wafers and the wafers are fusion bonded at 650$^{\circ}C$ to obtain enclosed channels. A polymer has been successfully polymerized in situ and used either as a frit for packing beads or, when derivatized with Cibacron Blue 3GA, as a separation matrix. Both of these technologies are based on in situ UV photopolymerization of glycidyl methacrylate (GMA) and trimethylolpropane trimethacrylate (TRIM) in channels.

Structural and Functional Analysis of Nitrogenase Fe Protein with MgADP bound and Amino Acid Substitutions (MgADP 결합 및 아미노산 치환 Nitrogenase Fe 단백질의 구조 및 기능 분석)

  • Jeong, Mi-Suk;Jang, Se-Bok
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.752-760
    • /
    • 2004
  • The function of the [4Fe-4S] cluster containing iron (Fe-) protein in nitrogenase catalysis is to serve as the nucleotide-dependent electron donor to the MoFe protein which contains the sites for substrate binding and reduction. The ability of the Fe protein to function in this manner is dependent on its ability to adopt the appropriate conformation for productive interaction with the MoFe protein and on its ability to change redox potentials to provide the driving force required for electron transfer. The MgADP-bound (or off) conformational state of the nitrogenase Fe protein structure described reveals mechanisms for long-range communication from the nucleotide-binding sites to control affinity of association with the MoFe protein component. Two pathways, termed switches I and II, appear to be integral to this nucleotide signal transduction mechanism. In addition, the structure of the MgADP bound Fe protein provides the basis for the changes in the biophysical properties of the [4Fe-4S] observed when Fe protein binds nucleotides. The structures of the nitrogenase Fe protein with defined amino acid substitutions in the nucleotide dependent signal transduction pathways of the Switch I and Switch II have been determined by X-ray diffraction methods. These two pathways have been also implicated by site directed mutagenesis studies, structural analysis and analogies to other proteins that utilize similar nucleotide dependent signal transduction pathways. We have examined the validity of the assignment of these pathways in linking the signals generated by MgATP binding and hydrolysis to macromolecular complex formation and intermolecular electron transfer. The results provide a structural basis for the observed biophysical and biochemical properties of the Fe protein variants and interactions within the nitrogenase Fe protein-MoFe protein complex.