• 제목/요약/키워드: nano-thick

검색결과 272건 처리시간 0.025초

Al 5052 함금 후판재의 전자빔 용접부 단면 형상과 강도에 관한 연구 (A Study on Electron Beam Weldmetal Cross Section Shapes and Strength of Al 5052 Thick Plate)

  • 김인호;이길영;주정민;박경태;천병선
    • Journal of Welding and Joining
    • /
    • 제27권3호
    • /
    • pp.73-79
    • /
    • 2009
  • This present paper investigated the mechanical properties and the microstructures of each penetration shapes classifying the conduction shape area and the keyhole shape area about electron beam welded 120(T)mm thick plated aluminum 5052 112H. As a result the penetration depth is increased linearly according to the output power, but the aspect ratio is decreased after the regular output power. In the conduction shape area, the Heat affected zone is observed relatively wider than the keyhole shape area. In the material front surface of the welded specimen, the width is decreased but the width in the material rear surface is increased. After the measuring the Micro Vikers Hardness, it showed almost similar hardness range in all parts, and after testing the tensile strength, the ultimate tensile strength is similar to the ultimate tensile strength of the base material in all the specimens, also the fracture point was generated in the base materials of all the samples. In the result of the impact test, impact absorbed energy of the Keyhole shape area is turned up very high, and also shown up the effect about four times of fracture toughness comparing the base material. In the last result of observing the fractographs, typical ductile fraction is shown in each weld metal, and in the basic material, the dimple fraction is shown. The weld metals are shown that there are no other developments of any new chemical compound during the fastness melting and solidification.

Properties of Dinickel-Silicides Counter Electrodes with Rapid Thermal Annealing

  • Kim, Kwangbae;Noh, Yunyoung;Song, Ohsung
    • 한국재료학회지
    • /
    • 제27권2호
    • /
    • pp.94-99
    • /
    • 2017
  • Dinickel-silicide $(Ni_2Si)/glass$ was employed as a counter electrode for a dye-sensitized solar cell (DSSC) device. $Ni_2Si$ was formed by rapid thermal annealing (RTA) at $700^{\circ}C$ for 15 seconds of a 50 nm-Ni/50 nm-Si/glass structure. For comparison, $Ni_2Si$ on quartz was also prepared through conventional electric furnace annealing (CEA) at $800^{\circ}C$ for 30 minutes. XRD, XPS, and EDS line scanning of TEM were used to confirm the formation of $Ni_2Si$. TEM and CV were employed to confirm the microstructure and catalytic activity. Photovoltaic properties were examined using a solar simulator and potentiostat. XRD, XPS, and EDS line scanning results showed that both CEA and RTA successfully led to tne formation of nano $thick-Ni_2Si$ phase. The catalytic activity of $CEA-Ni_2Si$ and $RTA-Ni_2Si$ with respect to Pt were 68 % and 56 %. Energy conversion efficiencies (ECEs) of DSSCs with $CEA-Ni_2Si$ and $RTA-Ni_2Si$catalysts were 3.66 % and 3.16 %, respectively. Our results imply that nano-thick $Ni_2Si$ may be used to replace Pt as a reduction catalytic layer for a DSSCs. Moreover, we show that nano-thick $Ni_2Si$ can be made available on a low-cost glass substrate via the RTA process.

루테늄 삽입층에 의한 니켈모노실리사이드의 안정화 (Thermal Stability of Ru-inserted Nickel Monosilicides)

  • 윤기정;송오성
    • 대한금속재료학회지
    • /
    • 제46권3호
    • /
    • pp.159-168
    • /
    • 2008
  • Thermally-evaporated 10 nm-Ni/1 nm-Ru/(30 nm or 70 nm-poly)Si structures were fabricated in order to investigate the thermal stability of Ru-inserted nickel monosilicide. The silicide samples underwent rapid thermal anne aling at $300{\sim}1,100^{\circ}C$ for 40 seconds. Silicides suitable for the salicide process were formed on the top of the single crystal and polycrystalline silicon substrates mimicking actives and gates. The sheet resistance was measured using a four-point probe. High resolution X-ray diffraction and Auger depth profiling were used for phase and chemical composition analysis, respectively. Transmission electron microscope and scanning probe microscope(SPM) were used to determine the cross-sectional structure and surface roughness. The silicide, which formed on single crystal silicon and 30 nm polysilicon substrate, could defer the transformation of $Ni_2Si $i and $NiSi_2 $, and was stable at temperatures up to $1,100^{\circ}C$ and $1,100^{\circ}C$, respectively. Regarding microstructure, the nano-size NiSi preferred phase was observed on single crystalline Si substrate, and agglomerate phase was shown on 30 nm-thick polycrystalline Si substrate, respectively. The silicide, formed on 70 nm polysilicon substrate, showed high resistance at temperatures >$700^{\circ}C$ caused by mixed microstructure. Through SPM analysis, we confirmed that the surface roughness increased abruptly on single crystal Si substrate while not changed on polycrystalline substrate. The Ru-inserted nickel monosilicide could maintain a low resistance in wide temperature range and is considered suitable for the nano-thick silicide process.

고세장비 나노 헤어 성형 및 응용 (Molding of High Aspect Ratio Nano-Hair Array and Its Applications)

  • 유영은;김태훈;서영호;최두선;이학주;김완두
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.113-116
    • /
    • 2006
  • Some nano hair systems in the nature are found to show excellent adhesive characteristic, which is called dry adhesive, and synthetic nano hairs to mimic these adhesiveness are believed to have many applications. To develop a practical synthetic dry adhesive system, we mold nano hairs on plastic substrates using thermoplstic materials including COC, PP, PC and PMMA. and estimate the moldability and the adhesive characteristic. As a template for molding nano hairs, AAO membrane is first adopted, which is 60um thick and 13mm in diameter. This membrane has about a billion of through-holes of which diameter is around 200nm. This AAO membrane and the pellet of materials are stacked in the mold and pressed to mold after heating up to be melted. The AAO membrane is removed using KOH to obtain the molded nano hairs. As a result, the diameter of the molded hairs is around 200nm and the length is $2um{\sim}60um$ depending on the molding conditions and materials. The molded nano hair substrates is estimated to show much better adhesive characteristic than a substrate without nano hairs.

  • PDF

Hybrid complementary circuits based on organic/inorganic flexible thin film transistors with PVP/Al2O3 gate dielectrics

  • Kim, D.I.;Seol, Y.G.;Lee, N.E.;Woo, C.H.;Ahn, C.H.;Ch, H.K.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.479-479
    • /
    • 2011
  • Flexible inverters based on complementary thin-film transistor (CTFTs) are important because they have low power consumption and other advantages over single type TFT inverters. In addition, integrated CTFTs in flexible electronic circuits on low-cost, large area and mechanically flexible substrates have potentials in various applications such as radio-frequency identification tags (RFIDs), sensors, and backplanes for flexible displays. In this work, we introduce flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The CTFTs were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. Basic electrical characteristics of individual transistors and the whole CTFTs were measured by a semiconductor parameter analyzer (HP4145B, Agilent Technologies) at room temperature in the dark. Performance of those devices then was measured under static and dynamic mechanical deformation. Effects of cyclic bending were also examined. The voltage transfer characteristics (Vout- Vin) and voltage gain (-dVout/dVin) of flexible inverter circuit were analyzed and the effects of mechanical bending will be discussed in detail.

  • PDF

ALD 방법으로 제조된 나노급 $TiO_2$에 의한 자외선 차단효과 연구 (UV Absorption of Nano-thick $TiO_2$ Prepared Using an ALD)

  • 한정조;송오성;류지호;윤기정
    • 한국산학기술학회논문지
    • /
    • 제8권4호
    • /
    • pp.726-732
    • /
    • 2007
  • ALD (atomic layer deposition)법을 이용하여 두께를 달리한 $10{\sim}50nm-TiO_{2-x}/quartz$ 구조의 UV 기능성 박막을 형성시켰다. 박막의 두께는 우선 $10nm-TiO_{2-x}$를 성막한 후 엘립소미터로 두께를 확인하였고 나머지 두께는 증착시간을 선형적으로 조절하여 완성하였다. $TiO_2$ 박막 두께에 따른 생성상과 파장대별 흡수도, 가시광선의 투과율을 각각 X선 회절기, UV-VIS-IR 분석기, 접사용 디지털 카메라를 써서 확인하였다. ALD 법으로 제조된 $TiO_{2-x}$는 벌크 $TiO_2$에 비해 비정질 (amorphous)이면서 비정량적인 $TiO_{2-x}$ 형태임을 확인하였다. 380 nm와 415 nm의 흡수단을 보여 $3.0{\sim}3.2eV$의 밴드갭을 가지는 기존의 벌크 $TiO_2$와는 달리, 제작된 $TiO_{2-x}$ 박막은 197 nm와 250 nm의 부근에서 흡수단을 보이는 특징이 있었다. 따라서 장파장대의 자외선을 차단하는 기능을 가진 기존의 벌크 $TiO_2$와는 달리 ALD로 제작된 나노급 $TiO_2$는 단파장대의 자외선을 흡수할 수 있는 기능성이 있었고, 아울러 가시광선대에서 우수한 투과도를 보였다. 새로이 제안된 ALD를 이용한 나노급 $TiO_{2-x}$ 박막은 가시광선의 투과도는 향상시키면서 단파장대의 자외선을 효과적으로 흡수하는 기능성을 가졌음을 확인하였다.

  • PDF

나노 스테레오리소그래피 공정을 이용한 무(無)마스크 나노 패턴제작에 관한 연구 (Investigation into direct fabrication of nano-patterns using nano-stereolithography (NSL) process)

  • 박상후;임태우;양동열
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.156-162
    • /
    • 2006
  • Direct fabrication of nano patterns has been studied employing a nano-stereolithography (NSL) process. The needs of nano patterning techniques have been intensively increased for diverse applications for nano/micro-devices; micro-fluidic channels, micro-molds. and other novel micro-objects. For fabrication of high-aspect-ratio (HAR) patterns, a thick spin coating of SU-8 process is generally used in the conventional photolithography, however, additional processes such as pre- and post-baking processes and expansive precise photomasks are inevitably required. In this work, direct fabrication of HAR patterns with a high spatial resolution is tried employing two-photon polymerization in the NSL process. The precision and aspect ratio of patterns can be controlled using process parameters of laser power, exposure time, and numerical aperture of objective lens. It is also feasible to control the aspect ratio of patterns by truncation amounts of patterns, and a layer-by-layer piling up technique is attempted to achieve HAR patterns. Through the fabrication of several patterns using the NSL process, the possibility of effective patterning technique fer various N/MEMS applications has been demonstrated.

A New Species of the Genus Ophlitaspongia (Poecilosclerida: Microcionidae) from Korea

  • Kang, Dong-Won;Sim, Chung-Ja
    • Animal Systematics, Evolution and Diversity
    • /
    • 제23권2호
    • /
    • pp.209-211
    • /
    • 2007
  • A new marine sponge in the family Microcionidae, Ophlitaspongia yongjeongensis n. sp. is collected from Yongjeong-ri, Hyeongyeong-myeon, Muan-gun, Korea during 2005-2007. O. yongjeongensis n. sp. is closely related to O. reticulata in growth form (shape and color). However, the thick style and slender style of O. yongjeongensis n. sp. are larger than O. reticulata's (Bergquist and Fromont, 1988).

아세토나이트릴 가스 검지를 위한 센스의 제작 및 특성 (Characteristics of metal-loaded TiO2/SnO2 thick film gas sensor for detecting acetonitrile)

  • 박영호;이창섭
    • 한국가스학회지
    • /
    • 제13권2호
    • /
    • pp.23-29
    • /
    • 2009
  • Pt, Pd, In 등의 촉매금속을 사용하여 아세토나이트릴 유독가스에 대한 감도를 향상시키는 SnO2 가스센스에 대하여 연구하였다. Metal-SnO2 후막은 백금전극이 내장된 알루미나 지지체의 스크린법으로 제작되었다. 본 센서의 특성은 검출가스의 농도의 함수로 반응기내 각센서의 전기적 저항을 측정하여 조사하였으며, 10-50ppm 범위의 유독가스 농도에 대하여 검지 측정하였다. 그 결과 촉매금속의 종류에 따라 센서에서 반응하는 감도가 각각 다르게 선택성을 갖고 있는 것으로 나타났다.

  • PDF

디지털 프린팅을 위한 전도성 배선에 관한 연구 (Investigation of Conductive Pattern Line for Direct Digital Printing)

  • 김용식;서상훈;이로운;김태훈;박재찬;김태구;정경진;윤관수;박성준;정재우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.502-502
    • /
    • 2007
  • Current thin film process using memory device fabrication process use expensive processes such as manufacturing of photo mask, coating of photo resist, exposure, development, and etching. However, direct printing technology has the merits about simple and cost effective processes because inks are directly injective without mask. And also, this technology has the advantage about fabrication of fine pattern line on various substrates such as PCB, FCPB, glass, polymer and so on. In this work, we have fabricated the fine and thick metal pattern line for the electronic circuit board using metal ink contains Ag nano-particles. Metal lines are fabricated by two types of printing methods. One is a conventional printing method which is able to quick fabrication of fine pattern line, but has various difficulties about thick and high resolution DPI(Dot per Inch) pattern lines because of bulge and piling up phenomenon. Another(Second) methods is sequential printing method which has a various merits of fabrication for fine, thick and high resolution pattern lines without bulge. In this work, conductivities of metal pattern line are investigated with respect to printing methods and pattern thickness. As a result, conductivity of thick pattern is about several un.

  • PDF