Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.2.94

Properties of Dinickel-Silicides Counter Electrodes with Rapid Thermal Annealing  

Kim, Kwangbae (Department of Materials Science and Engineering, University of Seoul)
Noh, Yunyoung (Department of Materials Science and Engineering, University of Seoul)
Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
Publication Information
Korean Journal of Materials Research / v.27, no.2, 2017 , pp. 94-99 More about this Journal
Abstract
Dinickel-silicide $(Ni_2Si)/glass$ was employed as a counter electrode for a dye-sensitized solar cell (DSSC) device. $Ni_2Si$ was formed by rapid thermal annealing (RTA) at $700^{\circ}C$ for 15 seconds of a 50 nm-Ni/50 nm-Si/glass structure. For comparison, $Ni_2Si$ on quartz was also prepared through conventional electric furnace annealing (CEA) at $800^{\circ}C$ for 30 minutes. XRD, XPS, and EDS line scanning of TEM were used to confirm the formation of $Ni_2Si$. TEM and CV were employed to confirm the microstructure and catalytic activity. Photovoltaic properties were examined using a solar simulator and potentiostat. XRD, XPS, and EDS line scanning results showed that both CEA and RTA successfully led to tne formation of nano $thick-Ni_2Si$ phase. The catalytic activity of $CEA-Ni_2Si$ and $RTA-Ni_2Si$ with respect to Pt were 68 % and 56 %. Energy conversion efficiencies (ECEs) of DSSCs with $CEA-Ni_2Si$ and $RTA-Ni_2Si$catalysts were 3.66 % and 3.16 %, respectively. Our results imply that nano-thick $Ni_2Si$ may be used to replace Pt as a reduction catalytic layer for a DSSCs. Moreover, we show that nano-thick $Ni_2Si$ can be made available on a low-cost glass substrate via the RTA process.
Keywords
dye sensitized solar cell; rapid thermal annealing; energy conversion efficiency; dinickel silicide; counter electrode;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Kay and M. Gratzel, Sol. Energ. Mater. Sol. C., 44, 99 (1996).   DOI
2 Z. Li, B. Ye, X. Hu, X. Ma, X. Zhang and Y. Deng, Electrochem. Commun., 11, 1768 (2009).   DOI
3 E. Olsen, G. Hagen and S. E. Lindquist, Sol. Energy Mater. Sol. C., 63, 267 (2000).   DOI
4 Y. Noh, B. Yu, K. Yoo, M. Ko and O. Song, Korean J. Met, Mater., 50, 243 (2012).
5 K. Mokurala, A. Kamble, P. Bhargava and S. Mallick, J. Electron. Mater., 44, 4400 (2015).   DOI
6 D. W. Zhang, X. D. Li, H. B. Li, S. Chen, Z. Sun, X. J. Yin and S. M. Huang, Carbon, 49, 5382 (2011).   DOI
7 S. Widodo, G. Wiranto and M. N. Hidayat, Energy Procedia, 68, 37 (2015).   DOI
8 J. Jia, J. Wu, Y. Tu, J. Huo, M. Zheng and J. Lin, J. Alloy Compd., 640, 29 (2015).   DOI
9 W. Zhou, X. Jia, L. Chen, Z. Yin, Z. Zhang and G. Gao, Mater. Lett., 163, 1 (2016).   DOI
10 K. Kim, Y. Noh, M. Choi and O. Song, Korean J. Met, Mater., 54, 615 (2016).   DOI
11 H. S. Kim, J. H. Lee and G. Y. Yeom, J. Korean Inst. Electr. Electron. Mater. Eng., 8, 619 (1995).
12 F. F. Santigo, J. Bisquert, E. Palomares, L. Oterio, D. Kuang, M. Zakeeruddin and M. Gratzel, J. Phys. Chem. C, 111, 6550 (2007).   DOI
13 C. Longo and M. A. D. Paoli, J. Braz. Chem. Soc., 14, 889 (2003).
14 Y. Cao, L. Nyborg and U. Jelvestam, Surf. Interface Anal., 41, 471 (2009).   DOI
15 E. G. Colgan, M. Maenpaa, M. Finetti and M. A. Nicolet, J. Electron. Mater., 12, 413 (1983).   DOI
16 B. O' Regan and M. Gratzel, Nature, 353, 737 (1991).   DOI