• Title/Summary/Keyword: nano-size oxide powder

Search Result 93, Processing Time 0.027 seconds

Preparation of Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process (분무열분해(噴霧熱分解) 공정(工程)에 의한 주석(朱錫) 산화물(酸化物) 나노 분말(粉末) 제조(製造))

  • Yu, Jae-Keun;Cha, Kwang-Yong;Kim, Myung-Choun;Han, Joung-Su;Jang, Jae-Bum;Lee, Yong-Hwa;Kim, Dong-Hee
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.79-88
    • /
    • 2008
  • This study is the previous stage for the mass production technology development of the nano-sized tin oxide powder by the recycling of the wasted tin metal, and nano-sized tin oxide powder with the average particle size below 50 nm is prepared from the tin chloride solution by the spray pyrolysis process. As the reaction temperature increases from 800 to 850, the average particle size of the generated powder increases from 20 to 30 nm. As the reaction temperature increases to 900, the droplet type is composed of the particles with the average size of the 30 nm. while the average size of the independent particles increases up to $80{\sim}100$ nm and the surface microstructure becomes more solid. Until $900^{\circ}C$, as the reaction temperature increases, the XRD peak intensity increases, while the specific surface area decreases. When the reaction temperature increases to 950, most of the powder appears with the independent type and the average particle size decrease down to 70 nm. The XRD peak intensity greatly decreases and the specific surface area increases almost twice.

Preparation of Nano-Sized Indium Oxide Powder by Spray Pyrolysis Process (噴霧熱分解 工程에 의한 인듐 酸化物 나노 粉末 製造)

  • Yu, Jae-Keun;Park, Si-Hyun;Sohn, Jin-Gun
    • Resources Recycling
    • /
    • v.13 no.6
    • /
    • pp.16-25
    • /
    • 2004
  • In this study, nano-sized indium oxide powder with the average particle size below 100 nm is prepared from the indium chloride solution by the spray pyrolysis process. The effects of the concentration of raw material solution, the nozzle tip size and the air pressure on the properties of powder were studied. As the indium concentration of the raw material solution increased from 40 g/l to 350 g/l, the average particle size of the powder gradually increased from 20 nm to 60 nm, yet the particle size distribution appeared more irregular, the intensity of a XRD peak increased and specific surface area decreased. As the nozzle tip size increased from 1 nm to 5 nm, the average particle size of the powder increased from 40 nm to 100 nm, the particle size distribution was much more irregular, the intensity of a XRD peak increased and specific surface area decreased. As the air pressure increased from 0.1 kg/cm$^2$ to 0.5 kg/cm$^2$, the average particle size of the powder varies slightly upto 90~100 nm. As the air pressure increased from 1 kg/cm$^2$ to 3 kg/cm$^2$, the average particle size decreased upto 50~60 nm, the intensity of a XRD peak decreased and the specific surface area increased.

Sintering Behavior of Nano-sized Gd2O3-doped CeO2 Powder Prepared by A High Energy Ball Milling (고에너지 볼밀링에 의해 제조된 Gd2O3-doped CeO2 나노분말의 소결 거동에 관한 연구)

  • Ryu, Sung-Soo;Kim, Hyung-Tae
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.302-307
    • /
    • 2008
  • $Gd_2O_3$-doped $CeO_2$(GDC) solid solutions have been considered as a promising materials for electrolytes in intermediate-temperature solid oxide fuel cells. In this study, the nano-sized GDC powder with average panicle size of 69nm was prepared by a high energy ball milling process and its sintering behavior was investigated. Heat-treatment at $1200^{\circ}C$ of nano-sized GDC powder mixture led to GDC solid-solution. The enhanced densification over 96% of relative density was obtained after sintering at $1300^{\circ}C$ for 2h. It was found that the sinterability of GDC powder could be significantly improved by the introduction of a high energy ball milling process.

Nitric Oxide Detection of Fe(DTC)3-hybrizided CdSe Quantum Dots Via Fluorescence Energy Transfer

  • Chang-Yeoul, Kim
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.453-458
    • /
    • 2022
  • We successfully synthesize water-dispersible CTAB-capped CdSe@ZnS quantum dots with the crystal size of the CdSe quantum dots controlled from green to orange colors. The quenching effect of Fe(DTC)3 is very efficient to turn off the emission light of quantum dots at four molar ratios of the CdSe quantum dots, that is, the effective covering the surface of quantum dots with Fe(DTC)3. However, the reaction with Fe(DTC)3 for more than 24 h is required to completely realize the quenching effect. The highly quenched quantum dots efficiently detect nitric oxide at nano-molar concentration of 110nM of NO with 34% of recovery of emission light intensity. We suggest that Fe(DTC)3-hybridized CdSe@ZnS quantum dots are an excellent fluorescence resonance energy transfer probe for the detection of nitric oxide in biological systems.

Fabrication and Properties of Nano-structured Ceramics

  • Ueno, Tomoyuki;Yoshimura, Masashi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.321-322
    • /
    • 2006
  • Nano-structured ceramics, which consist of structural elements with nanometer-size crystallites, are expected to show various unusual properties. We developed the novel nano-structured ceramics which consists of $Si_3N_4$ and TiN and a self-lubricant material. The ceramics was fabricated by powder metallurgy process using mechano-chemical grinding process and short-time sintering process. Each grain size of matrix and the self-lubricant particle was under about 50 nm and a few namometer. It showed high wear resistance and low friction coefficient by controlling of microstructure.

  • PDF

Synthesis of Aluminum Nitride Nanopowders by Carbothermal Reduction of Aluminum Oxide and Subsequent In-situ Nitridization (산화알루미늄 분말의 탄소열환원 및 직접 질화반응을 통한 질화알루미늄 나노분말의 합성)

  • Seo, Kyung-Won;Lee, Seong-Yong;Park, Jong-Ku;Kim, Sung-Hyun
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.432-438
    • /
    • 2006
  • Aluminum nitride (AlN) nanopowders with low degree of agglomeration and uniform particle size were synthesized by carbothermal reduction of alumina and subsequent direct nitridization. Boehmite powder was homogeneously admixed with carbon black nanopowders by ball milling. The powder mixture was treated under ammonia atmosphere to synthesize AlN powder at lour temperature. The effect of process variables such as boehmite/carbon black powder ratio, reaction temperature and reaction time on the synthesis of AlN nanopowder was investigated.

Crystallite Size Measurement of Uranium Oxide Fuel Powders by Neutron Diffraction (중성자 회절에 의한 산화우라늄 핵연료 분말의 결정크기 측정)

  • 류호진;강권호;문제선;송기찬;최용남
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.318-324
    • /
    • 2003
  • The nano-scale crystallite sizes of uranium oxide powders in simulated spent fuel were measured by the neutron diffraction line broadening method in order to analyze the sintering behavior of the dry process fuel. The mixed $UO_2$ and fission product powders were dry-milled in an attritor for 30, 60, and 120 min. The diffraction patterns of the powders were obtained by using the high resolution powder diffractometer in the HANARO research reactor. Diffraction line broadening due to crystallite size was measured using various techniques such as the Stokes' deconvolution, profile fitting methods using Cauchy function, Gaussian function, and Voigt function, and the Warren-Averbach method. The non-uniform strain, stacking fault and twin probability were measured using the information from the diffraction pattern. The realistic crystallite size could be obtained after separation of the contribution from the non-uniform strain, stacking fault and twin.

Preparation of ZnO Nano Powder and High-transparent UV Shielding Dispersion Sol (ZnO 나노분말 및 고투명성 자외선 차단 분산 졸의 제조)

  • Lee, Hun Dong;Kim, Jin Mo;Son, Dae Hee;Lee, Seung-Ho;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.391-395
    • /
    • 2013
  • In this study, zinc oxide (ZnO) nano powder, well known as an UV absorbing material, was synthesized with three synthetic conditions by the hydrothermal method. After ZnO nano powder was surface-modified with various silane coupling agents to improve dispersion property, a dispersion sol was prepared with dispersant for 72 h by the ball-milling of surface-modified ZnO nano powder. The dispersion sol, prepared by modifying the surface of the ZnO nano powder with an average size of about 30 nm using 3-chloropropyl trimethoxy silane, showed an excellent dispersion stability with a high UV-shielding and visible trnasparency.

Synthesis of Nano-sized Tungsten Carbide Powders by Vapor Phase Reaction of Tungsten Ethoxide (텅스텐 에톡사이드의 기상 반응을 이용한 초미립 WC 분말의 합성)

  • 가미다;하국현;김병기
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2003
  • Nano-sized WC powders were synthesized by vapor phase reaction using the precusor of tungsten ethoxide under helium and hydrogen atmosphere. The phases of the powder were varied with reaction Bone and gas flow rate. The powder size was about 30nm in diameter, and the tungsten carbide powder was coated by carbon layer. The synthesis of nano-sized WC powders was promoted as the hydrogen gas flow rate became higher. Inversely, tungsten oxide was formed by increasing the flow rate of helium gas. The synthesized powders were analyzed by XRD, FE-SEM, carbon analyzer etc.