• Title/Summary/Keyword: nano-silica powder

Search Result 46, Processing Time 0.024 seconds

Synthesis of High Purity Nano-Silica Using Water Glass (물유리를 이용한 고순도 나노실리카 제조)

  • Choi, Jin Seok;Lee, Hyun-Kwuon;An, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.271-276
    • /
    • 2014
  • Silica nano-powder (SNP) is an inorganic material able to provide high-performance in various fields because of its multiple functions. Methods used to synthesize high purity SNP, include crushing silica minerals, vapor reaction of silica chloride, and a sol-gel process using TEOS and sodium silicate solution. The sol-gel process is the cheapest method for synthesis of SNP, and was used in this study. First, we investigated the shape and the size of the silica-powder particles in relation to the variation of HCl and sodium silicate concentrations. After drying, the shape of nano-silica powder differed in relation to variations in the HCl concentration. As the pH of the solution increased, so did the density of crosslinking. Initially, there was NaCl in the SNP. To increase its purity, we adopted a washing process that included centrifugation and filtration. After washing, the last of the NaCl was removed using DI water, leaving only amorphous silica powder. The purity of nano-silica powder synthesized using sodium silicate was over 99.6%.

Experimental and numerical study on the mechanical properties of reinforced polyester composites

  • Ibrahim Alameri;Meral Oltulu
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.227-242
    • /
    • 2023
  • Polyester composites play a vital role in civil engineering applications, especially in bridge and car park structures. Therefore, the addition of waste silica-based fillers will both improve the mechanical and durability performance of composites and produce an environmentally friendly material. In this study, the mechanical performance of polyester composites was investigated experimentally and numerically by adding micro and nano-sized silica-based fillers, marble powder, silica fume and nano-silica. 24 cubes for the compression test and 18 prisms for the flexural test were produced in six different groups containing 30% marble powder, 5% silica fume and 1% nano-silica by weight. SEM/EDS testing was used to investigate the distribution of filler particles in the matrix. Experimentally collected results were used to validate tests in the Abaqus software. Additionally, the Extended Finite Element Method (XFEM) was used to estimate the fracture process for the flexural test. The results show that the added silica fume, marble powder and nano silica improves the compressive strength of polyester composites by 32-38% and the flexural tensile strength by 10-60% compared to pure polyester composite. The numerically obtained results matched well with the experimental data, demonstrating the accuracy and feasibility of the calibrated finite element model.

Study on the Synthesis and thermal Characteristics of Nano Porous Silica Powder (나노세공 실리카 분말의 합성과 열적 특성에 관한 연구)

  • 김종길;박진구;김호건
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.365-369
    • /
    • 2002
  • Silica hydrogel was synthesized by the reaction of liquid sodium silicate with sulfuric acid. The condensation polymerization of the synthesized hydrogel was carried out via an aging process under the acidic or alkaline conditions. Nano porous silica with the pore size below 3 nm and surface area of $715m^2/g$, was obtained by the above processes in acidic ranges(pH : 3~5). The pore size and surface area of the silica varied with pH, and in alkaline ranges(pH : 8~10), those were 21 nm and $300m^2/g$ respectively. The characteristics of the silica varied with the thermal treatment which caused the change of surface area, pore volume and pore diameter.

Evaluation of micro-channel characteristics of fused silica glass using powder blasting (Powder blasting을 이용한 Fused silica glass의 마이크로 채널 가공 및 특성 평가에 관한 연구)

  • Lee, Jung-Won;Kim, Tae-Min;Shin, Bong-Cheol
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.36-41
    • /
    • 2020
  • Recently, due to the development of MEMS technology, researches for the production of effective micro structures and shapes have been actively conducted. However, the process technology based on chemical etching has a number of problems such as environmental pollution and time problems due to multi-process. Various processes to cope with this process are being studied, and one of the mechanical etching processes is the powder blasting process. This process is a method of spraying fine particles, which has the advantage of being an effective process in manufacturing hard brittle materials. However, it is also a process that adversely affects the material surface roughness and material properties due to the impact of the injection of fine particles. In this study, after fabricating micro-channels in fused silica glass with excellent optical properties among the hard brittle materials, we used the nano indentation system to analyze the micro parts using nano-particles as well as machinability and surface roughness analysis of the processed surface. The analysis was performed for the effective processing of powder blasting.

Synthesis of Nano-Clay and The Application for Nanocomposite (나노클레이의 합성 및 나노복합재로의 응용)

  • Jeong Soon-Yong;Jeong Eon-Il
    • Journal of Powder Materials
    • /
    • v.12 no.2 s.49
    • /
    • pp.122-130
    • /
    • 2005
  • Layered silicate was synthesized at hydrothermal condition from silica adding to various materials. Nano-clay was synthesized by intercaltion of various amine compounds into synthetic layered silicate. The products were analysed by XRD, SEM, and FT-IR in order to examine the condition of synthesis and intercalation. From the results, it was confirmed that kaolinite was synthesized from precipitated silica and gibbsite at $220^{\circ}C$ during 10 days, and hetorite was synthesized from silica sol at $100^{\circ}C$ during 48 h. Na-Magadiite was synthesized from silica gel at $150^{\circ}C$ during 72 h, and Na-kenyaite was synthesized from silica gel at $160^{\circ}C$ during 84 h. Nano-clay was prepared using synthetic layered silicate intercalated with various amine compounds. Kenyaite was easily intercalated by various organic compounds, and has the highest basal-spacing value among other layered silicates. Basal-spacing was changed according to the length of alkyl chain of amine comopounds. Polymer can be easily intercalated by dispersion with large space of interlayer. Finally, epoxy/nano-clay nanocomposite can be easily prepared.

Characteristics of high-performance concrete with nano size cement (나노 시멘트를 이용한 고강도 콘크리트의 특성)

  • Jo, Byung-Wan;Park, Jong-Bin;Choi, Hae-Yun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.13-16
    • /
    • 2005
  • Nanoscale materials are of great interest due to their unique optical, electrical and magnetic properties. Due to the recent amazing achievements in nano technology, new materials were developed. But these nano technology is not apply to the construction part in spite of exellent properties of nano size material. The purpose of this study is to apply to nano technology into building materials. To develop the high performance concrete, nano cement particles is prepared by mechanical method. In the results of this study, the nano silica powder increase effect according to increase of the mixing amount, appeared that compressive strength increased but is limit in increment. For the production of high-strength concrete, nano silica powder was suitable the binder ratio from 20$\%$. And, the compressive strength of concrete are especially dependent on the curing temperature.

  • PDF

Physical and Chemical Properties of Nano-slag Mixed Mortar

  • Her, Jae-Won;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.145-154
    • /
    • 2010
  • As buildings have become higher and larger, the use of high performance concrete has increased. With this increase, interest in and use of ultra fine powder admixture is also on the rise. The silica fume and BSF are the admixtures currently being used in Korea. However, silica fume is exclusively import dependent because it is not produced in Korea. In the case of BFS, it greatly improves concrete fluidity and long-term strength. But a problem exists in securing early strength. Furthermore, air-cooled slag is being discarded, buried in landfills, or used as road bed materials because of its low activation energy. Therefore, we investigated in this study the usability of nano-slag (both rapidly-chilled and air-cooled) as an alternative material to the silica fume. We conducted a physic-chemical analysis for the nano-slag powder and performed a mortar test to propose quality standards. The analysis and testing were done to find out the industrial usefulness of the BFS that has been grinded to the nano-level.

Mixed Nano Silica Colloidal Slurry for Reliability Improvement of Sapphire Wafer CMP Process (사파이어 웨이퍼 CMP 공정 신뢰성 향상을 위한 혼합 나노실리카 콜로이달 슬러리)

  • Chung, Chan Hong
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • A colloidal silica slurry has been manufactured by mixing nano silica powders having different grain size to improve the reliability of Sapphire wafer CMP process. The main reliability problem of CMP process such as the breaking of wafer can be prevented by reducing the size of particles in a slurry. While existing commercial colloidal silica slurries are usually made of single grain size silica powder of about 120nm, in the present study 40nm and 100nm silica powders are mixed to achieve a similar removal rate. The new colloidal silica slurry showed wafer removal rate of $3.04{\mu}m/120min$ while that of a commercial colloidal silica slurry was $3.03{\mu}m/120min$. The roughness was less than $4{\AA}$ and scratch was 0. It is also expected that the reduction of the size of nano silica particles can improve the dispersion stability and prolong the useful life of the slurry.

Fracture energy and tension softening relation for nano-modified concrete

  • Murthy, A. Ramachandra;Ganesh, P.;Kumar, S. Sundar;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1201-1216
    • /
    • 2015
  • This paper presents the details of size independent fracture energy and bi-linear tension softening relation for nano modified high strength concrete. Nano silica in powder form has been used as partial replacement of cement by 2 wt%. Two popular methods, namely, simplified boundary effect method of Karihaloo et al. (2003) and RILEM (1985) fracture energy with P-${\delta}$ tail correction have been employed for estimation of size independent fracture energy for nano modified high strength concrete (compressive strength ranges from 55 MPa to 72 MPa). It is found that both the methods gave nearly same values, which is an additional evidence that either of them can be employed for determination of size independent fracture energy. Bi-linear tension softening relation corresponding to their size independent fracture energy has been constructed in an inverse manner based on the concept of non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams.