DOI QR코드

DOI QR Code

Experimental and numerical study on the mechanical properties of reinforced polyester composites

  • Ibrahim Alameri (Department of Civil Engineering, Faculty of Engineering, Sana'a University) ;
  • Meral Oltulu (Department of Civil Engineering, Faculty of Engineering, Ataturk University)
  • Received : 2021.10.06
  • Accepted : 2023.04.28
  • Published : 2023.09.25

Abstract

Polyester composites play a vital role in civil engineering applications, especially in bridge and car park structures. Therefore, the addition of waste silica-based fillers will both improve the mechanical and durability performance of composites and produce an environmentally friendly material. In this study, the mechanical performance of polyester composites was investigated experimentally and numerically by adding micro and nano-sized silica-based fillers, marble powder, silica fume and nano-silica. 24 cubes for the compression test and 18 prisms for the flexural test were produced in six different groups containing 30% marble powder, 5% silica fume and 1% nano-silica by weight. SEM/EDS testing was used to investigate the distribution of filler particles in the matrix. Experimentally collected results were used to validate tests in the Abaqus software. Additionally, the Extended Finite Element Method (XFEM) was used to estimate the fracture process for the flexural test. The results show that the added silica fume, marble powder and nano silica improves the compressive strength of polyester composites by 32-38% and the flexural tensile strength by 10-60% compared to pure polyester composite. The numerically obtained results matched well with the experimental data, demonstrating the accuracy and feasibility of the calibrated finite element model.

Keywords

References

  1. Ahmed, S.R. and Khanna, S. (2020), "Investigation into features of fracture toughness of a transparent Eglass fiber reinforced polyester composites at extreme temperatures", Heliyon, 6, e03986. https://doi.org/10.1016/j.heliyon.2020.e03986.
  2. Akaluzia, R.O., Edoziuno, F.O., Adediran, A.A., Odoni, B.U., Edibo, S. and Olayanju, T.M.A. (2020), "Evaluation of the effect of reinforcement particle sizes on the impact and hardness properties of hardwood charcoal particulate-polyester resin composites", Mater. Today Proc., 38, 570-577. https://doi.org/10.1016/j.matpr.2020.02.980.
  3. Awad, A.H., Abdel-Ghany, A.W., El-Wahab, A.A.A., El-Gamasy, R. and Abdellatif, M.H. (2020), "The influence of adding marble and granite dust on the mechanical and physical properties of PP composites", J. Therm. Anal. Calorim., 140, 2615-2623. https://doi.org/10.1007/s10973-019-09030-w.
  4. Awad, A.H. and Abdellatif, M.H. (2019), "Assessment of mechanical and physical properties of LDPE reinforced with marble dust", Compos. Part B Eng., 173, 106948. https://doi.org/10.1016/j.compositesb.2019.106948.
  5. Awad, A.H., El-gamasy, R.A., Abd El-Wahab, A. and Hazem Abdellatif, M. (2019), "Mechanical behavior of PP reinforced with marble dust", Constr. Build. Mater., 228, 116766. https://doi.org/10.1016/j.conbuildmat.2019.116766.
  6. Belytschko, T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Meth. Eng., 45, 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AIDNME598>3.0.CO;2-S.
  7. Benzannache, N., Bezazi, A., Bouchelaghem, H., Boumaaza, M., Amziane, S. and Scarpa, F. (2018), "Statistical analysis of 3-point bending properties of polymer concretes made from marble powder waste, sand grains, and polyester resin", Mech. Compos. Mater., 53, 781-790. https://doi.org/10.1007/s11029-018-9703-2.
  8. Bostanci, S.C. (2020), "Use of waste marble dust and recycled glass for sustainable concrete production", J. Clean. Prod., 251, 119785. https://doi.org/10.1016/j.jclepro.2019.119785.
  9. Boukhelf, F., Cherif, R., Trabelsi, A., Belarbi, R. and Bachir Bouiadjra, M. (2021), "On the hygrothermal behavior of concrete containing glass powder and silica fume", J. Clean. Prod., 318, 128647. https://doi.org/10.1016/j.jclepro.2021.128647.
  10. Chand, G., Happy, S.K. and Ram, S. (2021), "Assessment of the properties of sustainable concrete produced from quaternary blend of portland cement, glass powder, metakaolin and silica fume", Clean. Eng. Technol., 4, 100179. https://doi.org/10.1016/j.clet.2021.100179.
  11. Chaturvedi, A.K., Gupta, M.K. and Pappu, A. (2021), "The role of carbon nanotubes on flexural strength and dielectric properties of water sustainable fly ash polymer nanocomposites", Phys. B Condens. Matter., 620, 413283. https://doi.org/10.1016/j.physb.2021.413283.
  12. Chen, Y., Zhao, Y., Ai, S., He, C., Tao, Y., Yang, Y. and Fang, D. (2020), "A constitutive model for elastoplastic-damage coupling effect of unidirectional fiber-reinforced polymer matrix composites", Compos. Part Appl. Sci. Manuf., 130, 105736. https://doi.org/10.1016/j.compositesa.2019.105736.
  13. Choudhary, R., Gupta, R., Alomayri, T., Jain, A. and Nagar, R. (2021), "Permeation, corrosion, and drying shrinkage assessment of self-compacting high strength concrete comprising waste marble slurry and fly ash, with silica fume", Struct., 33, 971-985. https://doi.org/10.1016/j.istruc.2021.05.008.
  14. Cinar, M.E. and Kar, F. (2018), "Characterization of composite produced from waste PET and marble dust", Constr. Build. Mater., 163, 734-741. https://doi.org/10.1016/j.conbuildmat.2017.12.155.
  15. Daghash, S.M., Soliman, E.M., Kandil, U.F. and Reda Taha, M.M. (2016), "Improving impact resistance of polymer concrete using CNTs", Int. J. Concr. Struct. Mater., 10, 539-553. https://doi.org/10.1007/s40069-016-0165-4.
  16. Danish, A., Mosaberpanah, M.A., Salim, M.U., Fediuk, R., Rashid, M.F. and Waqas, R.M. (2021), "Reusing marble and granite dust as cement replacement in cementitious composites: A review on sustainability benefits and critical challenges", J. Build. Eng., 44, 102600. https://doi.org/10.1016/j.jobe.2021.102600.
  17. Das, S.K., Mustakim, S.M., Adesina, A., Mishra, J., Alomayri, T.S., Assaedi, H.S. and Kaze, C.R. (2020), "Fresh, strength and microstructure properties of geopolymer concrete incorporating lime and silica fume as replacement of fly ash", J. Build. Eng., 32, 101780. https://doi.org/10.1016/j.jobe.2020.101780.
  18. Debska, B., Licholai, L., Silva, G.J.B. and Altoe Caetano, M. (2020), "Assessment of the mechanical parameters of resin composites with the addition of various types of fibres", Mater., 13, 1378. https://doi.org/10.3390/ma13061378.
  19. El Alouani, M., Alehyen, S., El Hadki, H., Saufi, H., Elhalil, A., Kabbaj, O.K. and Taibi, M. (2021), "Synergetic influence between adsorption and photodegradation of Rhodamine B using synthesized fly ash based inorganic polymer", Surf. Interf., 24, 101136. https://doi.org/10.1016/j.surfin.2021.101136.
  20. Elalaoui, O., Ghorbel, E. and Ouezdou, M.B. (2018), "Influence of flame retardant addition on the durability of epoxy based polymer concrete after exposition to elevated temperature", Constr. Build. Mater., 192, 233-239. https://doi.org/10.1016/j.conbuildmat.2018.10.132.
  21. Gameiro, T., Novais, R.M., Correia, C.L., Carvalheiras, J., Seabra, M.P., Labrincha, J.A., Duarte, A.C. and Capela, I. (2020), "Red mud-based inorganic polymer spheres: Innovative and environmentally friendly anaerobic digestion enhancers", Bioresour. Technol., 316, 123904. https://doi.org/10.1016/j.biortech.2020.123904.
  22. Ince, C., Hamza, A., Derogar, S. and Ball, R.J. (2020), "Utilisation of waste marble dust for improved durability and cost efficiency of pozzolanic concrete", J. Clean. Prod., 270, 122213. https://doi.org/10.1016/j.jclepro.2020.122213.
  23. Karimi, M., Montazeri, A. and Ghajar, R. (2017), "On the elasto-plastic behavior of CNT-polymer nanocomposites", Compos. Struct., 160, 782-791. https://doi.org/10.1016/j.compstruct.2016.10.053.
  24. Kucukdogan, N., Aydin, L. and Sutcu, M. (2018), "Theoretical and empirical thermal conductivity models of red mud filled polymer composites", Thermochim. Acta, 665, 76-84. https://doi.org/10.1016/j.tca.2018.05.013.
  25. Li, M., Khelifa, M. and El Ganaoui, M. (2017), "Mechanical characterization of concrete containing wood shavings as aggregates", Int. J. Sustain. Built Environ., 6, 587-596. https://doi.org/10.1016/j.ijsbe.2017.12.005.
  26. Liu, C., Wang, X., Chen, Y., Zhang, C., Ma, L., Deng, Z., Chen, C., Zhang, Y., Pan, J. and Banthia, N. (2021), "Influence of hydroxypropyl methylcellulose and silica fume on stability, rheological properties, and printability of 3D printing foam concrete", Cement Concrete Compos., 122, 104158. https://doi.org/10.1016/j.cemconcomp.2021.104158.
  27. Lokuge, W. and Aravinthan, T. (2013), "Effect of fly ash on the behaviour of polymer concrete with different types of resin", Mater. Des., 51, 175-181. https://doi.org/10.1016/j.matdes.2013.03.078.
  28. Mansour, R., El Abidine, R.Z. and Brahim, B. (2017), "Performance of polymer concrete incorporating waste marble and alfa fibers", Adv. Concrete Constr., 5, 331. https://doi.org/10.12989/acc.2017.5.4.331.
  29. Mo, J., Ou, Z., Zhao, X., Liu, J. and Wang, Y. (2017), "Influence of superabsorbent polymer on shrinkage properties of reactive powder concrete blended with granulated blast furnace slag", Constr. Build. Mater., 146, 283-296. https://doi.org/10.1016/j.conbuildmat.2017.04.105.
  30. Nasier, S. (2021), "Utilization of recycled form of concrete, E-wastes, glass, quarry rock dust and waste marble powder as reliable construction materials", Mater. Today Proc., 45, 3231-3234. https://doi.org/10.1016/j.matpr.2020.12.381.
  31. Petrik, A. and A roch, R. (2019), "Usage of true stress-strain curve for FE simulation and the influencing parameters", IOP Conf. Ser. Mater. Sci. Eng., 566, 012025. https://doi.org/10.1088/1757-899X/566/1/012025.
  32. Pradeep, A.V. (2015), "Effect of blast furnace slag on mechanical properties of glass fiber polymer composites", Procedia Mater. Sci., 10, 230-237. https://doi.org/10.1016/j.mspro.2015.06.045.
  33. Raja, V.L. and Kumaravel, A. (2015), "Studies on physical and mechanical properties of silica fume-filled nylon 66 polymer composites for mechanical components", Polym. Polym. Compos., 23, 427-434. https://doi.org/10.1177/096739111502300608.
  34. Rokbi, M., Baali, B., Rahmouni, Z.E.A. and Latelli, H. (2019), "Mechanical properties of polymer concrete made with jute fabric and waste marble powder at various woven orientations", Int. J. Environ. Sci. Technol., 16, 5087-5094. https://doi.org/10.1007/s13762-019-02367-7.
  35. Shukla, A., Gupta, N. and Gupta, A. (2020), "Development of green concrete using waste marble dust", Mater. Today Proc., 26, 2590-2594. https://doi.org/10.1016/j.matpr.2020.02.548.
  36. Vandevenne, N., Iacobescu, R.I., Pontikes, Y., Carleer, R., Thijssen, E., Gijbels, K., Schreurs, S. and Schroeyers, W. (2018), "Incorporating Cs and Sr into blast furnace slag inorganic polymers and their effect on matrix properties", J. Nucl. Mater., 503, 1-12. https://doi.org/10.1016/j.jnucmat.2018.02.023.
  37. Wawrzenczyk, J., Molendowska, A. and Klak, A. (2016), "Effect of ground granulated blast furnace slag and polymer microspheres on impermeability and freeze-thaw resistance of concrete", Procedia Eng., 161, 79-84. https://doi.org/10.1016/j.proeng.2016.08.501.
  38. Yang, B.J., Hwang, Y.Y. and Lee, H.K. (2013), "Elastoplastic modeling of polymeric composites containing randomly located nanoparticles with an interface effect", Compos. Struct., 99, 123-130. https://doi.org/10.1016/j.compstruct.2012.11.043.
  39. Zhang, J., Huang, Y., Ma, G. and Nener, B. (2021), "Mixture optimization for environmental, economical and mechanical objectives in silica fume concrete: A novel frame-work based on machine learning and a new meta-heuristic algorithm", Resour. Conserv. Recycl., 167, 105395. https://doi.org/10.1016/j.resconrec.2021.105395.