• Title/Summary/Keyword: nano-modified surface

Search Result 235, Processing Time 0.034 seconds

Energetics of adsorptions on fcc(111) and binary system; An application of the modified embedded atom method

  • Hy. Shin;J. Seo;Kim, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.188-188
    • /
    • 1999
  • The embedded atom method (EAM) of Daw and Baskes as a semiempirical method, has been successfully applied to the fcc or nearly filled d-band transition metals due to its computational feasibility and its methodological simplicity. Then Baskes modified the EAM (MEAM) to include directional bonding and applied it to metals, semiconductors, and diatomic gases, all of which have different types of bondings. Here, we present a detailed study of the energetics of adsorption on the fcc(111) surfaces and binary system within the framework of MEAM. In adsorption on fcc(111) surfaces, there are two energetically favored sites, so called, fcc site and hcp site, which may trigger stacking fault in the growth of films and might switch growth mode between 3D growth and layer by layer growth. We scrutinized the role of the hcp sites, which would offer dynamic growth pathways although the dynamics are not yet clear within the limited experimental resolution. Featuring these transient motions in the atomic level should contribute to the understanding the growth mechanisms on fcc(111) surface. And we also applied MEAM for initial stage energetics at the Cr coverage of sub- monolayer on W(110). We hope that recently observed extraordinary growth behavior at the Cr coverage of 0.7 monolayer, self- organized nano-scale lines, can be resolved in this MEAM binary system calculation.

  • PDF

Ablation of Polypropylene for Breathable Packaging Films

  • Sohn, Ik-Bu;Noh, Young-Chul;Choi, Sung-Chul;Ko, Do-Kyeong;Lee, Jong-Min;Choi, Young-Jin
    • Laser Solutions
    • /
    • v.9 no.3
    • /
    • pp.15-21
    • /
    • 2006
  • A Polypropylene (PP) film was ablated using a femtosecond laser with a center wavelength of 785 nm, a pulse width of 184 fs and a repetition rate of 1 kHz. Increments of both pulse energy and the shot number of pulses lead to co-occurrence of photochemical and thermal effect, demonstrated by the spatial expansion of rim on the surface of PP. The shapes of the laser-ablated PP films were imaged by a scanning electron microscope (SEM) and measured a 3D optical measurement system (NanoFocus). And, the oxygen transmission rate (ORT) of periodically laser-ablated PP film were characterized by oxygen permeability tester for modified atmosphere packaging (MAP) of fresh fruit and vegetable. Our results demonstrate that femtosecond pulsed laser is efficient tools for breathable packaging films in modifying the flow of air and gas into and out of a fresh produce container, where the micropatterns are specifically tailored in size, location and number which are easily controlled by laser pulse energy and pulse patterning system.

  • PDF

Gas Transport Behavior of Modified Carbon Nanotubes/Hydrogel Composite Membranes (개질된 탄소나노튜브/하이드로겔 복합막의 기체 투과 특성)

  • Yoon, Hee Wook;Lee, Hee Dae;Park, Ho Bum
    • Membrane Journal
    • /
    • v.23 no.5
    • /
    • pp.375-383
    • /
    • 2013
  • Nanomaterials having large surface area, uniform dimensions or pores can be utilized in various membrane applications Amongst them, many studies have been focused on nanocarbon materials: graphene, graphene oxide and carbon nanotubes. Carbon nanotubes, one-dimensional structure, have excellent characteristics in thermal, chemical and mechanical strength properties. However, carbon nanotubes was mainly used to reinforce mechanical properties of polymer materials in previous applications. In contrast to previous studies, we focused on modified carbon nanotubes/polyethylene glycol diacrylate (PEGDA) composite membrane preparation for improvement of permeability and selectivity on gas separation.

Preparation and Characteristics of Fouling Resistant Nanofiltration Membranes (내오염성 나노여과막의 제조 및 특성)

  • Kim, No-Won
    • Membrane Journal
    • /
    • v.17 no.1
    • /
    • pp.44-53
    • /
    • 2007
  • The primary objective of this study is to increase the extent of water flux and fouling resistance of nano-filtration or reverse osmosis membranes. This study was performed to investigate the effect of surface characteristics of silane coated membranes on modified fouling index. Commercial polyamide composite RO membrane (RE1812-LP) and NF membrane (ESNA4040-LF) were treated with silane coupling agents in ethanol at five different concentrations. The silane coupling reagent, aminopropylmethoxydiethoxysilane, contains one aminoalkyl and three alkoxy groups. The hydrophilic effect of aminoalkyl group of APMDES on the permeability and fouling resistance of the modified membrane was examined. The surfaces of the modified membranes were characterized by FE-SEM, contact angle analyzer, and zeta potentiometer in order to confirm successful sol-gel methods. The modified NF membranes showed significantly enhanced water flux and fouling resistance without a decrease in salt rejection in divalent ionic feed solution.

Anodization Process of the YBa2Cu3O7-x Strip Lines by the Conductive Atomic Force Microscope Tip (전도성 AFM 탐침에 의한 YBa2Cu3O7-x 스트립 라인의 산화피막 형성)

  • 고석철;강형곤;임성훈;한병성;이해성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.875-881
    • /
    • 2004
  • Fundamental results obtained from an atomic force microscope (AFM) chemically-induced direct nano-lithography process are presented, which is regarded as a simple method for fabrication nm-scale devices such as superconducting flux flow transistors (SFFTs) and single electron tunneling transistors (SETs). Si cantilevers with Pt coating and with 30 nm thick TiO coating were used as conducting AFM tips in this study. We observed the surfaces of superconducting strip lines modified by AFM anodization' process. First, superconducting strip lines with scan size 2 ${\mu}{\textrm}{m}$${\times}$2 ${\mu}{\textrm}{m}$ have been anodized by AFM technology. The surface roughness was increased with the number of AFM scanning, The roughness variation was higher in case of the AFM tip with a positive voltage than with a negative voltage in respect of the strip surface. Second, we have patterned nm-scale oxide lines on ${YBa}-2{Cu}_3{O}_{7-x}$ superconducting microstrip surfaces by AFM conductive cantilever with a negative bias voltage. The ${YBa}-2{Cu}_3{O}_{7-x}$ oxide lines could be patterned by anodization technique. This research showed that the critical characteristics of superconducting thin films were be controlled by AFM anodization process technique. The AFM technique was expected to be used as a promising anodization technique for fabrication of an SFFT with nano-channel.

Influence of different surface treatments on bond strength of novel CAD/CAM restorative materials to resin cement

  • Komurcuoglu, Meltem Bektas;Sagirkaya, Elcin;Tulga, Ayca
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.439-446
    • /
    • 2017
  • PURPOSE. To evaluate the effects of different surface treatments on the bond strength of novel CAD/CAM restorative materials to resin cement by four point bending test. MATERIALS AND METHODS. The CAD/CAM materials under investigation were e.max CAD, Mark II, Lava Ultimate, and Enamic. A total of 400 bar specimens ($4{\times}1.2{\times}12mm$) (n=10) milled from the CAD/CAM blocks underwent various pretreatments (no pretreatment (C), hydrofluoric acid (A), hydrofluoric acid + universal adhesive (Scotchbond) (AS), sandblasting (Sb), and sandblasting + universal adhesive (SbS)). The bars were luted end-to-end on the prepared surfaces with a dual curing adhesive resin cement (Variolink N, Ivoclar Vivadent) on the custom-made stainless steel mold. Ten test specimens for each treatment and material combination were performed with four point bending test method. Data were analyzed using ANOVA and Tukey's test. RESULTS. The surface treatment and type of CAD/CAM restorative material showed a significant effect on the four point bending strength (FPBS) (P<.001). For LDC, AS surface treatment showed the highest FPBS results ($100.31{\pm}10.7MPa$) and the lowest values were obtained in RNC ($23.63{\pm}9.0MPa$) for control group. SEM analyses showed that the surface topography of CAD/CAM restorative materials was modified after treatments. CONCLUSION. The surface treatment of sandblasting or HF acid etching in combination with a universal adhesive containing MDP can be suggested for the adhesive cementation of the novel CAD/CAM restorative materials.

Preparation of Urethane Nanocomposites with Inorganic Nano Fillers and Their Physical Properties (무기계 나노분말 충전 폴리우레탄 나노복합재료의 제조 및 물성)

  • Yang Yun-Kyu;Hwang Taek-Sung;Hwang Eui-Hwan
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.129-134
    • /
    • 2006
  • Nanocomposites of polyurethane were prepared from inorganic nano particles, $Na^+-montmorillonite$ (MMT), silica, $CaCO_3$, and surface modified MMT and their properties were investigated. It was shown that the molecular weight and polydispenity of nanocomposites of polyurethane were 20000 to 28000 and 1.0 to 2.0, respectively. d-Spacing for nanocomposites of MMT were increased than that of pure MMT. Initial degradation temperature of nanocomposites were 250 to $280^{\circ}C$. And also, the range of weight loss for nanocomposites were decreased and the end of thermal degradation was observed at higher temperatures about $50^{\circ}C$. The elongation at break for $CaCO_3$ filled nanocomposites were the highest among the nanocomposites used in this study. studied. It was found that the tensile strength increased with increasing the filler contents while the silica nanocomposite exhibited the lowest increase and the $CaCO_3$ nanocomposite the highest.

A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads

  • Abdulrazzaq, Mohammed Abdulraoof;Kadhim, Zeyad D.;Faleh, Nadhim M.;Moustafa, Nader M.
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2020
  • Dynamic stability of graded nonlocal nano-dimension plates on elastic substrate due to in-plane periodic loads has been researched via a novel 3- unknown plate theory based on exact position of neutral surface. Proposed theory confirms the shear deformation effects and contains lower field components in comparison to first order and refined 4- unknown plate theories. A modified power-law function has been utilized in order to express the porosity-dependent material coefficients. The equations of nanoplate have been represented in the context of Mathieu-Hill equations and Chebyshev-Ritz-Bolotin's approach has been performed to derive the stability boundaries. Detailed impacts of static/dynamic loading parameters, nonlocal constant, foundation parameters, material index and porosities on instability boundaries of graded nanoscale plates are researched.

Fabrication of a Porous 3C-SiC Based Resistivity Hydrogen Sensor and Its Characteristics (다공성 3C-SiC 기반 저항식 수소센서의 제작과 그 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.168-171
    • /
    • 2011
  • Porous 3C-SiC(pSiC) samples with different pore diameters were prepared from poly crystalline N-type 3C-SiC by electrochemical anodization. The pSiC surface was chemically modified by the sputtering of Pd and Pt nano-particles as a hydrogen catalyst. Changes in resistance were monitored with hydrogen concentrations in the range of 110 ppm - 410 ppm. The variations of the electrical resistance in the presence of hydrogen demonstrated that Pd and Pt-deposited pSiC samples have the ability to detect hydrogen at room temperature. Regardless of the catalyst, the 25 nm pore diameter samples showed good response and recovery properties. However, the 60 nm samples showed unstable and slow response. It was found that the pore size affects the catalyst reaction and consequently, results in changes of the sensitivity to hydrogen.

Polyol Synthesis of Ruthenium Selenide Catalysts for Oxygen Reduction Reaction

  • Lee, Ki-Rak;Woo, Seong-Ihl
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3145-3150
    • /
    • 2010
  • Ruthenium catalysts modified by selenium have been introduced as alternative materials to Pt in Direct methanol fuel cells (DMFCs). RuSe nano-particles were synthesized on the Vulcan XC72R carbon supports via polyol method. The prepared catalysts were electrochemically and physically characterized by cyclic voltammetry (CV,) linear sweep voltammetry, methanol tolerance test, X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energydispersive Spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). Increasing the Se concentration up to 20 at % increased the electro-catalytic activity for the oxygen reduction. By increasing Se amount, Ru metallic form on the surface was increased. The $Ru_{80}Se_{20}$/C catalysts showed the highest oxygen reduction reaction (ORR) activity and outstanding methanol tolerant property in half cell tests as well as single cell test.