• 제목/요약/키워드: nano-imprint

검색결과 108건 처리시간 0.035초

PMMA 나노 기둥의 압축시험에 대한 분자동역학 해석 (Molecular Dynamics Simulation for Compression Test of PMMA Nano Pillars)

  • 김정엽;김재현;최병익
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.502-505
    • /
    • 2007
  • PMMA has been extensively adopted in Nano Imprint Lithography(NIL). PMMA nano-structures experience severe mechanical load and deformation during NIL process, and understanding its mechanical behavior is very important in designing and optimizing NIL process. One of the most promising techniques for characterizing the mechanical behavior of nano structures is nano pillar compression test. In this study, the mechanical behaviors of PMMA pillars during compression test are analyzed using Molecular Dynamics. Two methods for simulation of PMMA nano pillars are proposed. The stress-strain relationship of nano-scale PMMA structure is obtained based on CVFF(Covalent Valence Force Fields) potential and the dependency of the applied strain rate on the stress-strain relationship is analyzed. The obtained stress-strain relationships can be useful in simulating nano-scale PMMA structures using Finite Element Method(FEM) and understanding the experimental results obtained by compression test of PMMA nano pillars.

  • PDF

나노 임프린팅 리소그래피 장비의 기술개발 동향 (State of the art and technological trend for the nano-imprinting lithography equipment)

  • 이재종;최기봉;정광조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.196-198
    • /
    • 2003
  • Classical lithography in semiconductor employs stepper technologies. Limits of this technology are clearly seen at structures below 100nm. Nano-imprinting lithography is a new method for generating patterns in submicron range at reasonable cost. In order to manufacture nano-imprinting lithography(NIL) equipment, several NIL manufacturers have been developing key technologies for realization of nano-imprinting process, recently. In this paper, we've been describe state-of-the-art and technology trends for nano-imprinting lithography equipments.

  • PDF

비접촉식 진동측정 장치를 이용한 정밀 스테이지의 진동특성 평가시험 (Vibration experiment of precision stage that use laser vibrator)

  • 이재우;이강욱;임홍재
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1224-1230
    • /
    • 2007
  • In this study, a new modal test method is presented to evaluate vibration characteristic of the nano imprint stage system. Since it is difficult to measure vibration level without contacting the machine component, non contacting modal test method, laser scanning system is ultrared. Finite element analysis results are compared with the modal test results.

  • PDF

나노임프린트 리소그래피를 이용한 나노 패턴 사파이어 기판 제작과 이를 이용한 청색 LED의 효율 향상 연구 (Enhancement of Blue LED's efficiency with nano-patterned sapphire substrate fabricated by using nano-imprint lithography)

  • 김진승;조중연;이헌
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 춘계학술발표회 논문집
    • /
    • pp.164-164
    • /
    • 2012
  • 청색 발광 다이오드의 광추출 효율 향상 및 전기적 특성 향상을 위하여 기판이 되는 사파이어에 마이크로급 패턴을 형성하는 공정이 일반적으로 사용되고 있다. 기존의 공정과는 달리, 저가의 간단한 공정을 통해 쉽게 유사한 성능 향상을 얻기 위하여, 나노임프린트 리소그래피 공정을 도입하여 사파이어 기판 상에 일정한 주기와 형태를 갖는 나노 패턴을 형성하였으며, 이를 이용하여 제작한 발광 다이오드의 성능이 전기적, 광학적 측면에서 크게 향상되었음을 확인할 수 있었다.

  • PDF

열방식 마이크로 임프린트 공정을 위한 고분자 재료의 수치적 모델링과 해석 (Numerical Investigation of Micro Thermal Imprint Process of Glassy Polymer near the Glass Transition Temperature)

  • 란 슈하이;이수훈;이혜진;송정한;성연욱;김무종;이문구
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.45-52
    • /
    • 2009
  • The research on miniature devices based on non-silicon materials, in particular polymeric materials has been attracting more and more attention in the research field of the micro/nano fabrication in recent years. Lost of applications and many literatures have been reported. However, the study on the micro thermal imprint process of glassy polymer is still not systematic and inadequate. The aim of this research I to obtain a numerical material model for an amorphous glassy polymer, polycarbonate (PC), which can be used in finite element analysis (FEA) of the micro thermal imprint process near the glass transition temperature (Tg). An understanding of the deformation behavior of the PC specimens was acquired by performing tensile stress relaxation tests. The viscoelastic material model based on generalized Maxwell model was introduced for the material near Tg to establish the FE model based on the commercial FEA code ABAQUS/Standard with a suitable set of parameters obtained for this material model form the test data. As a result, the feasibility of the established viscoelastic model for PC near Tg was confirmed and this material model can be used in FE analysis for the prediction and improvement of the micro thermal imprint process for pattern replication.

  • PDF