• Title/Summary/Keyword: nano-drug

Search Result 211, Processing Time 0.026 seconds

Synthesis and Characterization of Poly(ethylene glycol) Grafted Polysuccinimide (폴리(에틸렌 글리콜)이 결합된 Polysuccinimide의 합성과 특성)

  • Lim, Nak-Hyun;Lee, Ha-Young;Kim, Moon-Suk;Khang, Gil-Son;Lee, Hai-Bang;Cho, Sun-Hang
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.36-40
    • /
    • 2005
  • Poly(amino acid) derivatives have been widely investigated as a drug carrier in drug delivery system. Particularly,polysuccinimide (PSI) is one of the most promising drug carriers since it possesses suitable physicochemical characteristics for development of macromolecular prodrugs, due to biocompatibility and biodegradability. In this study, we deal with the synthesis of polyaspartamide having various functional groups such as methoxy-poly(ethylene glycol) (MPEG) via ring closing of PSI. PSI was synthesized by polyonensation polymerization of spartic acid. The variety of average molecular weight was confirmed with reacion time and catalyst content to observe the optimum condition of synthesis. MPEG, hydrophilic chain, was bonded to fabricate polymeric micell composed of hydrophilic and hydrophobic polymer. All materials were characterized by 1H-NMR, FT-IR and GPC. In addition, the formation of nanoparticle micelle as drug carrier were also examined. Micelle size was measured by ELS and AFM. The functionalized polysparamide formed nanoparticle micelle whose size ranged from 90 to 130 nm. In conclusion, we prepared polyaspartamide functionalized with PEG examined the possibility as drug carriers.

Synthesis of complex nanoparticles using bioceramic silica (바이오 세라믹 실리카를 이용한 복합 나노입자 구조체의 합성)

  • Yoon, Seokyoung;Lee, Jung Heon
    • Ceramist
    • /
    • v.21 no.3
    • /
    • pp.283-292
    • /
    • 2018
  • Here, we introduce various type of inorganic nanostructure synthesized with functional nanoparticles and silica. From two decades ago, functional inorganic nanoparticles have been synthesized and highlighted, now we moved to next level of wet-chemical synthesis. By integrating functional nanoparticles with silica, we were able to synthesize multi-functional nanostructure, which expand the applications of nanoparticles to catalyst, drug carrier, sensors. In this context, silica has been spotlighted due to its versatility. Silica has highly biocompatible, relatively transparent and stable under harsh conditions. Thus it can be used as good supporter to synthesize complex multi-functional nanostructure when mixed with other functional nanoparticles. A various shape of complex nanostructures have been synthesized including core-shell type, yolk-shell type and janus type etc. In this paper, we have described the purposes of synthesizing silica noncomplex and various case studies for biomedical applications and self-assembly.

The Use of Pistachio Pollen for the Production of Nanostructured Porous Nickel Oxide

  • Atalay, F.E.;Yigit, E.;Biber, Z.S.;Kaya, H.
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850143.1-1850143.9
    • /
    • 2018
  • Natural biotemplates - such as bacteria, fungi and viruses - are used in nanostructured metal oxide production. The pollen can be found abundantly in nature, and their microcapsules can be easily isolated from the pollen by chemical treatments. To date, pollen microcapsules are mostly used as drug carriers and catalytic agent templates. In the present study, nanoporous-structured nickel oxide is produced using Pistachio pollen microcapsules. The raw pollen, chemically treated pollen and metal-coated pollen were characterized using scanning electron microscopy, Brunauer-Emmett-Teller (BET) surface area analysis, thermogravimetric analysis (TGA), differential thermal analysis (DTA) and X-ray diffraction (XRD) techniques. The natural Pistachio pollen which were procured from Gaziantep, Turkey, are spherical, with a diameter of approximately $23{\mu}m$. The maximum surface area obtained for nickel oxide-coated microcapsules is $228.82m^2/g$. This result shows that Pistachio pollen are an excellent candidate for the production of porous nanostructured materials for supercapacitor electrodes.

Effect of Specific Interaction of Multi-Ligands on the Specific Interaction between Particle and Cell (멀티 리간드의 특이적 상호작용이 입자-세포간 상호작용에 미치는 영향)

  • Yoon, Jung Hyun;Lee, Sei Young
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.94-101
    • /
    • 2022
  • Recent advancement of micro/nano technology enables the development of diverse micro/nano particle-based delivery systems. Due to the multi-functionality and engineerability, particle-based delivery system are expected to be a promising method for delivery to the target cell. Since the particle-based delivery system should be delivered to the various kinds of target cell, including the cardiovascular system, cancer cell etc., it is frequently decorated with multiple kinds of targeting molecule(s) to induce specific interaction to the target cell. The surface decorated molecules interact with the cell surface expressed molecule(s) to specifically form a firm adhesion. Thus, in this study, the probability of adhesion is estimated to predict the possibility to form a firm adhesion for the multi-ligand decorated particle-based delivery system.

Biomimetic Nano Delivery Carrier and Surface Chemistry (생체모사 나노전달체 연구와 계면화학)

  • Oh, Seung-joo;Kim, Hee-Jin;Han, Sara;Jeong, Jae Hyun
    • Prospectives of Industrial Chemistry
    • /
    • v.20 no.6
    • /
    • pp.40-53
    • /
    • 2017
  • 나노전달체 관련 기술은 다양한 질병 치료에 사용되어 단위세포 수준의 치료를 가능하게 할 뿐 아니라 영상 진단과 접목되어 질병의 진단 및 치료가 동시에 가능한 기술로 진화하고 있다. 본지에서는 이러한 연구 중 하나로 생체모사 나노전달체에 대해 다룬다. 다양한 면역세포 및 백혈구, 적혈구 등의 살아있는 세포의 기능을 나노전달체에 부여하여 전달효율 및 치료효과를 높이고자 하는 기술이다. 지금까지의 나노전달체 연구 및 개발 동향에 대하여 간략하게 살펴보고 특별히 최근 주목 받고 있는 생체모사 나노전달체의 개념, 제조 방법, 응용 및 앞으로의 전망에 대하여 논하였다.

Electrospraying of Micro/Nano Particles for Protein Drug Delivery (단백질 약물 전달을 위한 마이크로/나노 입자의 전기분무 제조법)

  • Yoo, Ji-Youn;Kim, Min-Young;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.215-220
    • /
    • 2007
  • The control of the surface energy by electrohydrodynamic force provides electrospraying with various potential advantages such as simple particle size control, mono-dispersity, high recovery, and mild processing conditions. The advantages are quite helpful to improve the stability of protein drug and control its release. Herein, the nano-encapsulation of protein drugs using electrospraying was investigated. Albumin as a model protein was processed using uniaxial and co-axial electrospraying, and chitosan, polycaporlactone (PCL), and poly (ethylene glycol) (PEG) were used as encapsulation materials. The major processing parameters such as the conductivity of spraying liquids, flow rate, the distance of electrical potential gradient, etc were measured to obtain the maximum efficiency. In the chitosan systems, mean particles size decreases as flow rate and the distance between nozzle and the collecting part decreases. In the uniaxial technique of the PCL systems, mean particles size decreases as flow rate decreases. In the coaxial technique of the PCL systems, it was found that the particles size gets larger under the application of the higher ratio of inner-to-outer liquid flow rates. The primary particles formed out of an electrospraying nozzle showed narrow particle size distribution, but once they arrived to the collecting part, aggregation behavior was observed obviously. Efficient nano-encapsulation of albumin with PCL, PEG, and chitosan was conveniently achieved using electrospraying at above 12 kV.

A review: Synthetic strategy control of magnetite nanoparticles production

  • Yusoff, Ahmad H.M.;Salimi, Midhat N.;Jamlos, Mohd F.
    • Advances in nano research
    • /
    • v.6 no.1
    • /
    • pp.1-19
    • /
    • 2018
  • Iron oxide nanoparticles excite researcher interest in biomedical applications due to their low cost, biocompatibility and superparamagnetism properties. Magnetic iron oxide especially magnetite ($Fe_3O_4$) possessed a superparamagnetic behaviour at certain nanosize which beneficial for drug and gene delivery, diagnosis and imaging. The properties of nanoparticles mainly depend on their synthesis procedure. There has been a massive effort in developing the best synthetic strategies to yield appropriate physico-chemical properties namely co-precipitation, thermal decomposition, microemulsions, hydrothermal and sol-gel. In this review, it is discovered that magnetite nanoparticles are best yielded by co-precipitation method owing to their simplicity and large production. However, its magnetic saturation is within range of 70-80 emu/g which is lower than thermal decomposition and hydrothermal methods (80-90 emu/g) at 100 nm. Dimension wise, less than 100 nm is produced by co-precipitation method at $70^{\circ}C-80^{\circ}C$ while thermal decomposition and hydrothermal methods could produce less than 50 nm but at very high temperature ranging between $200^{\circ}C$ and $300^{\circ}C$. Thus, co-precipitation is the optimum method for pre-compliance magnetite nanoparticles preparation (e.g., 100 nm is fit enough for biomedical applications) since thermal decomposition and hydrothermal required more sophisticated facilities.

Preparation of Polymer/Drug Nano- and Micro-Particles by Electrospraying

  • Lee, Jong-Hwi;Park, Chul-Ho;Kim, Min-Young;Yoo, Ji-Youn;Kim, Ki-Hyun;Lee, Jong-Chan
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.217-217
    • /
    • 2006
  • The surface energy control capability of electrohydrodynamic force provides electrospraying with various potential advantages such as simple particle size control, mono-dispersity, high recovery, and mild processing conditions. Herein, the one step nano-encapsulation of protein drugs using electrospraying was developed. The major processing parameters such as the conductivity of spraying liquids, flow rate, the distance between electric potentials, etc were examined to obtain the maximum efficiency. The recovery of particles was found relatively high as could be conjectured based on the principle of electrospraying. When organic solvents were employed, the processing windows of electrospraying were relatively narrow than water systems. Efficient nano-encapsulation of BSA with polymers was conveniently achieved using electrospraying at above 12 kV.

  • PDF

Fabrication of Functional Microcapsule for Drug Delivery by using Droplet Phase Flow (Droplet 유동을 이용한 마이크로캡슐의 제작)

  • Jeong, Eun-Ho;Kim, Il;Go, Jeung-Sang;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.2
    • /
    • pp.6-10
    • /
    • 2006
  • The functional spherical microcapsules were produced through the innovative conjunction of the well-defined amphiphilic block copolymer and the stable droplet phase flow in the micro chemical plant. The microcapsules were formed to have hollow inner cavity and outer surface wall with nano-pores. To examine the potential of encapsulating foreign biochemical molecules, Congo-red dye was loaded into the microcapsule. The release performance in the specific surroundings such as temperature, pH and time was evaluated quantitatively.

  • PDF

Emerging roles of exosomes in cancer invasion and metastasis

  • Soung, Young Hwa;Nguyen, Thalia;Cao, Hans;Lee, Janet;Chung, Jun
    • BMB Reports
    • /
    • v.49 no.1
    • /
    • pp.18-25
    • /
    • 2016
  • Recent evidence has indicated that nano-sized vesicles called "exosomes" mediate the interaction between cancer cells and their microenvironment and play a critical role in the development of cancers. Exosomes contain cargo consisting of proteins, lipids, mRNAs, and microRNAs that can be delivered to different types of cells in nascent as well as distant locations. Cancer cell-derived exosomes (CCEs) have been identified in body fluids such as urine, plasma, and saliva from patients with cancer. Although their content depends on tumor type and stage, CCEs merit consideration as prognostic and diagnostic markers, as vehicles for drug delivery, and as potential therapeutic targets because they could transport various oncogenic elements. In this review, we summarize recent advances regarding the role of CCEs in cancer invasion and metastasis, as well as its potential clinical applications. [BMB Reports 2016; 49(1): 18-25]