• Title/Summary/Keyword: nano-clay

Search Result 88, Processing Time 0.024 seconds

Evaluation of mechanical properties and non-flammability of Nylon6 using melamine-based halogen-free flame retardant (Melamine계 난연제를 이용한 Nylon6의 난연성 및 물리적 특성 평가)

  • Kim Dong-Hak;Ryu Kwan-Suk;Son Young-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.743-748
    • /
    • 2006
  • We investigated the flame retardancy and the mechanical properties of Nylon6 by using melamine-based halogen-free flame retardants(melamine cyanurate:MC-100 and melamine phosphate:MP-100). We chose the UL-94 method for flame retardancy and measured the tensile strength, flexural strength, flexural modulus by using UTM and impact strength by using Izod impact tester. We also tested the effect of nano-clay on flammability and mechanical properties. We obtained the V0 grade when the concentration of flame retardant was over 5 wt%. The tensile strength and flexural strength decreased and flexural modulus increased with the concentration of both flame retardant systems. The results showed that MC-100 system was better than MPP-100 system. Because of poor dispersion, we did not obtain the synergistic effect of nano-clay.

  • PDF

Characterization of Epoxy Resin Containing Nano Clay Prepared by Electron Beam (전자선에 의해 제조된 나노 clay 함유 에폭시 수지의 특성)

  • Park, Jong-Seok;Lee, Seung-Jun;Lim, Youn-Mook;Jeong, Sung-In;Gwon, Hui-Jeong;Shin, Young-Min;Kang, Phil-Hyun;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.9-13
    • /
    • 2015
  • Epoxy resin is widely used as aerospace, automobile, construction and electronics due to their good mechanical and electrical properties and environmental advantages. However, the inherent flammability of epoxy resin has limited its application in some field where good flame retardancy is required. Nano clay can enhance the properties of polymers such as flames retardancy and thermal stability. In this study, we have investigated the nanoclay filled epoxy composite, which has good flame retardancy while maintaining high mechanical properties. The cured epoxy resins were obtained using an electron beam curing process. The nano clays were dispersed in epoxy acrylate solution and mechanically stirred. The prepared mixtures were irradiated using an electron beam accelerator. The composites were characterized by gel content and thermal/mechanical properties. Moreover, the flammability of the composite was evaluated by limited oxygen index (LOI). The flame retardancy of nano clay filled epoxy composite was evidently improved.

Electrorheological characteristics of poly(o-ethoxy)aniline nanocomposite

  • Sung Jun Hee;Choi Hyoung Jin
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.4
    • /
    • pp.193-199
    • /
    • 2004
  • Poly(o-ethoxy)aniline (PEOA)/organoclay nanocomposite was prepared via a solvent intercalation using chloroform as a cosolvent with organically modified montmorillonite (OMMT) clay. The PEOA initially synthesized from a chemical oxidation polymerization in an acidic condition at pH = 1 was intercalated into interlayers of the clay with $25\;wt{\%}$ clay content. Electrical conductivity of the PEOA/OMMT nano­composite was found to be controlled via the intercalating process. The synthesized PEOA/OMMT nano­composite was characterized via an XRD and a TGA, and then adopted as an electrorheological (ER) material. The PEOA/OMMT synthesized with controllable electrical conductivity without a dedoping pro­cess was found to show typical ER characteristics possessing a yield stress from both steady state and dynamic measurements under an applied electric field.

Solventless UV Curable Material for Low Cost System (저에너지 UV 경화형 무용제 소재 개발)

  • KIM, KWANGIN;LEE, JUHEON;LEE, HYUNJU;HAN, HAKSOO
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.1
    • /
    • pp.77-84
    • /
    • 2017
  • In this study, Poly-urethane acrylate (PUA) was synthesized by the reaction between Polycaprolactonetriol (PCLT) and Isophorone dissocyanate (IPDI) and hybridized with inorganic materials. Tetraethylortho silicate (TEOS) and nano clay (Closite 20A) were used as inorganic particles. For the hybridization of TEOS with PUA, sol-gel method is used, in which TEOS is made into spherical particle in the firsthand. In the case of Nano clay, hybridization is carried out through the dispersion as Nano clay has a layered structure. The solution of PUA hybrid was made into a film after UV curing and its thermo and electrical properties were measured. The experimental analysis and result demonstrate that the PUA hybrid shows an improved thermal properties and lower dielectric constant than that of the non-hybrid PUA. The trend of improved properties was different depending on structure of inorganic materials.

A Study on Mechanical Properties Improvement of Halogen-free Flame Retardant Compounds by Nanoclay Addition (나노클레이 첨가에 따른 할로겐프리 난연컴파운드의 기계적 특성에 관한 연구)

  • Hwang, Chan-Yun;Yang, Jong-Seok;Sung, Baek-Yong;Kim, Ji-Yeon;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.126-130
    • /
    • 2015
  • In this study, some materials are organized and experimented with variables to obtain the optimum mix proportion for the mechanical property of halogen free flame resistance compound with varying addition of nano clay. Tensile strength, density and stiffness are tested in the room temperature. In this study, unlike existing layered structure, nano clay with tabular structure is used and sufficient stiffness, strength, thermal stability and gas block capability can be achieved with small amount of addition. Tensile strength and elongation test show high rupture strength only in specimens with compatibilizing agents while density test shows average measurement in all the specimens except T-9. It was confirmed that the measurement value according to the additives in compatibilizing agent or in nano clay of hardness test represents similarly.

Preparation and Characterization of Poly(vinyl alcohol)/bentonite Nanocomposites Films with Modified Bentonites (개질된 벤토나이트가 혼입된 폴리비닐알코올/벤토나이트 나노복합 필름의 제조 및 특성분석)

  • Ji, Byung Chul;Yang, Seong Baek;Lee, Jungeon;Park, Jae Min;Han, Myung-Dong;Kim, Ui Ju;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.33 no.3
    • /
    • pp.161-167
    • /
    • 2021
  • Polymer nanocomposite is considered a great alternative to solve the limitations that exist in a simple combination material, as well as to produce multifunctional and high-performance results. In this research, PVA/bentonite nanocomposite films were prepared based on the presence or absence of modification of nano-clay(bentonite) a SUPERGEL® product, modification conditions and content, and the structural variation of the prepared PVA/bentonite nanocomposite films were examined. The effect of variations in the internal structure of the nanocomposite on mechanical and thermal properties was investigated. As a result of evaluating the thermal characteristics of the PVA/bentonite nanocomposite film based on the concentration of the modified bentonite, it was verified that the thermal characteristics and stability were improved because of interaction between the polymer and the modified nano-clay.

Characteristics on Electroosmosis Ground Improvement Using Nano-geosynthetics (나노섬유를 이용한 동전기 지반개량에 관한 특성)

  • Ahn, Kwangkuk;Jeong, Kusic;Lee, JunDae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.4
    • /
    • pp.59-63
    • /
    • 2009
  • In this study, Nano-geosynthetics with electroosmosis method was used and tried to verify the possibility of usage for soft ground improvement. Electroosmosis tests were performed with increasing the voltage level and changing distance between electrodes. The electrokinetic cell was assembled and a Nano-geosynthetics was inserted into the plastic drain board. And electroosmosis was applied to the disturbed kaolin clay. In order to study the effects of ground improvement, ground settlement, water content, collected pore water and shear strength were compared and analyzed with non-applied kaolin clay. Also, the electroosmosis tests were performed with changing the distance between electrodes and the voltage size. As a results of changing the distance and voltage between electrodes, the more voltage size was increased, the more the settlement of ground, shear strength and collected pore water were increased. As the distance between electrodes were increased, the settlement of ground, shear strength, water content and collected pore water were decreased. Finally, Nano-geosynthetics as a material of electrode have the sufficient potential to improve soft ground.

  • PDF