Electrorheological characteristics of poly(o-ethoxy)aniline nanocomposite

  • Sung Jun Hee (Dept. of Polymer Science and Engineering, Inha University) ;
  • Choi Hyoung Jin (Dept. of Polymer Science and Engineering, Inha University)
  • 발행 : 2004.12.01

초록

Poly(o-ethoxy)aniline (PEOA)/organoclay nanocomposite was prepared via a solvent intercalation using chloroform as a cosolvent with organically modified montmorillonite (OMMT) clay. The PEOA initially synthesized from a chemical oxidation polymerization in an acidic condition at pH = 1 was intercalated into interlayers of the clay with $25\;wt{\%}$ clay content. Electrical conductivity of the PEOA/OMMT nano­composite was found to be controlled via the intercalating process. The synthesized PEOA/OMMT nano­composite was characterized via an XRD and a TGA, and then adopted as an electrorheological (ER) material. The PEOA/OMMT synthesized with controllable electrical conductivity without a dedoping pro­cess was found to show typical ER characteristics possessing a yield stress from both steady state and dynamic measurements under an applied electric field.

키워드

참고문헌

  1. Cho, M.S., H.J. Choi and W.S. Abn, 2004a, Enhanced elec-trorheology of coating polyaniline confined in MCM-41 chan-nels, Langmuir 20, 202-207 https://doi.org/10.1021/la035051z
  2. Cho, M.S., S.Y. Park, J.Y. Whang and H.J. Choi, 2004b, Syn-thesis and electrical properties of polymer composites with polyaniline nanoparticles, Mater. Sci. Eng. C 24, 15-18 https://doi.org/10.1016/j.msec.2003.09.003
  3. Cho, M.S., Y.H. Cho, H.J. Choi and M.S. Jhon, 2003, Synthesis and electorheological characteristic of polyaniline-coated poly (methylmethacrylate) microsphere: size effect, Langmuir 19, 5875-5881 https://doi.org/10.1021/la026969d
  4. Cho, Y.H., H.J. Choi, M.S. Cho and M.S. Jhon, 2002, Elec-trorheological characterization of polyanilinecoated poly(methyl methacylate) suspensions, Colloid Polym. Sci. 280, 1062-1066 https://doi.org/10.1007/s00396-002-0698-8
  5. Choi, H.J., M.S. Cho, J.W. Kim, C.A. Kim and M.S. Jhon, 2001, A yield stress scaling function for electrorheological fluids, Appl. Phys. Lett. 78, 3806-3808 https://doi.org/10.1063/1.1379058
  6. Choi, H.J., J.W. Kim, J. Joo and B.H. Kim, 2001a, Synthetic and electrorheology of emulsion intercalated PANI-clay nanocom-posite, Synth. Met. 121, 1325-1326 https://doi.org/10.1016/S0379-6779(00)00619-6
  7. Choi, H.J., S.G. Kim, Y.H. Hyun and M.S. Jhon, 2001b, Prep-aration and rheological characteristics of solvent-cast poly(eth-ylene oxide)/montmorillonite nanocomposites, Macromol. Rapid Commun. 22, 320-325 https://doi.org/10.1002/1521-3927(20010301)22:5<320::AID-MARC320>3.0.CO;2-3
  8. Conrad, H., C. Wu and X. Tang, 1999, Conductivity in elec-trorheology, Int. J. Mod. Phys. B 13, 1729-1738 https://doi.org/10.1142/S0217979299001739
  9. Galgali, G., C. Ramesh and A. Lele, 2001, A rheological study on the kinetics of hybrid formation in polypropylene nano-composites, Macromolecules 34, 852-858 https://doi.org/10.1021/ma000565f
  10. Gilman, J.W., 1999, Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites, Appl. Clay Sci. 15, 31-49 https://doi.org/10.1016/S0169-1317(99)00019-8
  11. Goodwin, J.W., G.M. Markham and B. Vincent, 1997, Studies on model electrorheological fluids, J. Phys. Chem. B 101, 1961-1967 https://doi.org/10.1021/jp962267j
  12. Greenland, DJ., 1963, Adsorption of poly(vinyl alcohols) by montmorillonite, J. Colloid Sci. 18, 647-664 https://doi.org/10.1016/0095-8522(63)90058-8
  13. Jia, W., E. Segal, D. Komemandel, Y. Lamhot, M. Narkis and A Siegmann, 2002, Polyamide-DBSA/organophillic clay nano-composite; synthesis and characterization, Synth. Met. 128, 115-120 https://doi.org/10.1016/S0379-6779(01)00672-5
  14. Joo, J., J.K. Lee, S.Y. Lee, K.S. Jang, E.J. Oh and A.J. Epstein, 2000, Physical characterization of electrochemically and chem-ically synthesized polypyrroles, Macromolecules 33, 5131-5136 https://doi.org/10.1021/ma991418o
  15. Kim, R.H., J.H. Jung, J.W. Kim, H.J. Choi and J. Joo, 2001a, Effect of dopant and clay on nanocomposites of polyaniline (PAN) intercalated into $Na^+$-montmorillonite ($Na^+$-MMT), Synth. Met. 121, 1311-1312 https://doi.org/10.1016/S0379-6779(00)01288-1
  16. Kim, B.H., J.H. Jung, J. Joo, A.J. Epstein, K. Mizoguchi, J.W Kim and H.J. Choi, 2002a, Nanocomposite of polyaniline and $Na^+$-montmorillonite clay, Macromolecules 35, 1419-1423 https://doi.org/10.1021/ma010497c
  17. Kim, D.H., S.H. Chu, K.H. Abn and S.J. Lee, 1999, Dynamic simulation of squeezing flow of ER fluids using parallel pro-cessing, Korea-Australia Rheol. J. 11, 233-240
  18. Kim, J.W, S.G. Kim, H.J. Choi, M.S. Suh, M.J. Shin and M.S. Jhon, 2001b, Synthesis and eectrorheological characterization of polyaniline and $Na^+$-montmorillonite clay nanocomposite, Int. J. Mod. Phys. B 15, 657-664 https://doi.org/10.1142/S021797920100512X
  19. Kim, S.G., H.J. Choi and M.S. Jhon, 2001c, Preparation and characterization of phosphate cellulose-based electrorheolog-ical fluids, Macromol. Chem. Phys. 202, 521-526 https://doi.org/10.1002/1521-3935(20010201)202:4<521::AID-MACP521>3.0.CO;2-Q
  20. Kim, T.H., L.W Jang, D.C. Lee, H.J. Choi and M.S. Jhon, 2002b, Synthesis and rheology of intercalated polystyrene/$Na^+$-mont-morillonite nanocomposite, Macromol. Rapid Commun. 23, 191-195 https://doi.org/10.1002/1521-3927(20020201)23:3<191::AID-MARC191>3.0.CO;2-H
  21. Lan, T., P.D. Kaviratna and T.J. Pinnavaia, 1994, On the natural of polyimide-clay hybrid composites, Chem. Mater. 6, 573-575 https://doi.org/10.1021/cm00041a002
  22. Lee, D.K., S.H. Lee, K. Char and J. Kim, 2000, Expansion dis-tribution of basal spacing of the silicate layers in polyaniline/ Na-montmorillonite nanocomposites monitored with X-ray dif-fraction, Macromol. Rapid Commun. 21, 1136-1139 https://doi.org/10.1002/1521-3927(20001101)21:16<1136::AID-MARC1136>3.0.CO;2-S
  23. Lee, H.J., R.D. Chin, S.M. Yang and O.O. Park, 1998, Surfactant effect on the stability and electrorheological properties of poly-aniline particle suspension J. Colloid Interf. Sci. 206, 424-438 https://doi.org/10.1006/jcis.1998.5661
  24. Lee, Y.H., C.A. Kim, W.H. Jang, H.J. Choi and M.S. Jhon, 2001, Synthesis and electrorheological characteristics of microen-capsulated polyaniline particles with melamine-formaldehyde resins, Polymer 42, 8277-8283 https://doi.org/10.1016/S0032-3861(01)00342-1
  25. Lu, Y., G. Shi, C. Li and Y. Liang, 1998, Thin polypyrrole films prepared by chemical oxidative polymerization, J. Appl. Polym. Sci. 70, 2169-2172 https://doi.org/10.1002/(SICI)1097-4628(19981212)70:11<2169::AID-APP10>3.0.CO;2-I
  26. Macinnes, D. and B.L. Funt, 1998, Poly-o-methoxyaniline: A new soluble conducting polymer, Synth. Met. 25, 235-242 https://doi.org/10.1016/0379-6779(88)90248-2
  27. Mello, S.V., L.H.C. Mattoso, R.M. Faria and O.N. Oliveira, 1995, Effect of doping on the fabrication of Langmuir and Langmuir-Blodgett films of poly(O- ethoxyaniline), Synth. Met. 71,2039-2040 https://doi.org/10.1016/0379-6779(94)03155-Y
  28. Messermith, P.B. and E.P. Giannelis, 1995, Synthesis and barrier properties of poly($\varepsilon$-caprolactone)-Iayered silicate nanocom-posites, J. Polym. Sci. Part A: Polym. Chem. 33, 1047-1057 https://doi.org/10.1002/pola.1995.080330707
  29. Ogawa, M. and Y. Takizawa, 1999, Intercalation of alkylam-monium cations into a layered titanate in the presence of mac-rocylic compounds, Chem. Mater. 11, 30-32 https://doi.org/10.1021/cm980671k
  30. Okada, K., T. Mitsunaga and Y. Nagase, 2003, Properties and particles dispersion of biodegradable resin/clay nanocompos-ites, Korea-Australia Rheol. J. 15, 43-50
  31. Park, J.H. and O.O. Park, 2001, Electrorheology and magne-torheology, Korea-Australia Rheol. J. 13, 13-17
  32. Park, J.H., Y.T. Lim and O.O. Park, 2001, New approach to enhance the yield stress of electrorheological fluids by poly-aniline-coated layered silicate nanocomposites, Macromol. Rapid Commun. 22, 616-619 https://doi.org/10.1002/1521-3927(20010501)22:8<616::AID-MARC616>3.0.CO;2-#
  33. Plocharski, J., H. Drabik, H. Wycislik and T. Ciach, 1997, Elec-trorheological properties of polyphenylene suspensions, Synth. Met. 88, 139-145 https://doi.org/10.1016/S0379-6779(97)03848-4
  34. Roth, S. and W. Graupner, 1993, Conductive polymers: eval-uation of industrial applications, Synth. Met. 57, 3623-3631 https://doi.org/10.1016/0379-6779(93)90487-H
  35. Ryu, J.G., S.W Park, H. Kim and J.W. Lee, 2004, Power ultra-sound effects for in situ compatibilization of polymer-clay nanocomposites, Mater. Sci. Eng. C 24, 285-288 https://doi.org/10.1016/j.msec.2003.09.057
  36. Scaife, B.K.P. 1989, In: Principles of dielectrics, Clarendon Press, Oxford, 66
  37. Shim, Y,-B., D.E. Stilwell and S.-M. Park, 1991, Electrochem-istry of conductive. X: polyaniline-based potentionmetric sen-sor for dissolved oxygen, Electroanalysis 3, 31-36 https://doi.org/10.1002/elan.1140030106
  38. Sung, J.H., J.W. Kim, H.J. Choi and S.B. Choi, 2003, Synthesis and characterization of organoclay nanocomposite with poly(o-ethoxyaniline), Synth. Met. 135-136, 19-20 https://doi.org/10.1016/S0379-6779(02)01035-4
  39. Sur, O.S., S.G. Lyu and J.H. Chang, 2003, Synthesis and LCST behavior of thermosensitive poly(N-isopropylacryamide-clay nanocomposites, J. Ind. Eng. Chem. 9, 58-62 https://doi.org/10.1021/ie50085a021
  40. Then, B.K.O. 1979, Formation and properties of clay-polymer complexes, New York: Elsevier
  41. Usuki, A., M. Kawasumi, Y. Kojima, A. Okada, T. Kurauchi and O. Kamigaito, 1993, Swelling behavior of montmorillonite cat-ion exchanged for w-arnino acids by e-caprolactam. J. Mater. Res. 8, 1174-1178 https://doi.org/10.1557/JMR.1993.1174
  42. Wessling, B., 1998, Dispersion as the link between basic research and commercial applications of conductive polymers (poly-aniline), Synth. Met. 93, 143-154 https://doi.org/10.1016/S0379-6779(98)00017-4
  43. Wu, J. and M. Lerner, 1993, Structural, thermal, and electrical characterization of layered nanocomposites derived from sodium-montmorillonite and polyethers, Chem. Mater. 5, 835-838 https://doi.org/10.1021/cm00030a019