• Title/Summary/Keyword: nano-carbon fiber

Search Result 130, Processing Time 0.026 seconds

A Study on Carbon Nano Materials as Conductive Oilers for Microwave Absorbers (전자파 흡수체를 위한 전도성 소재로서의 탄소나노소재의 특성에 대한 연구)

  • Lee, Sang-Kwan;Kim, Chun-Gon;Kim, Jin-Bong
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.28-33
    • /
    • 2006
  • In this paper, we have studied the complex permittivities and their influence on the design of microwave absorbers of E-glass fabric/epoxy composite laminates containing three different types of carbon-based nano conductive fillers such as carbon black (CB), carbon nano fiber (CNF) and multi-wall nano tube (MWNT). The measurements were performed fur permittivities at the frequency band of 0.5 GHz$\sim$18.0 GHz using a vector network analyzer with a 7 mm coaxial air line. The experimental results show that the complex permittivities of the composites depend strongly on the natures and concentrations of the conductive fillers. The real and imaginary parts of the complex permittivities of the composites were proportional to the filler concentrations. But, depending on the types of fillers and frequency band, the increasing rates of the real and imaginary parts with respect to the filler concentrations were all different. These different rates can have an effect on the thickness in designing the single layer microwave absorbers. The effect of the different rates at 10 GHz was examined by using Cole-Cole plot; the plot is composed of a single layer absorber solution line and measured permittivities from these three types of composites. Single layer absorbers of 3 different thicknesses using carbon nano materials were fabricated and the -10 dB band of absorbing performances were all about 3 GHz.

Dense Polycrystalline SiC Fiber Derived from Aluminum-doped Polycarbosilane by One-Pot Synthesis (One-Pot 합성공정으로 만든 Aluminum이 doping된 폴리카보실란으로부터 제조된 치밀한 결정화 탄화규소 섬유)

  • Shin, Dong-Geun;Kong, Eun-Bae;Riu, Doh-Hyung;Kim, Young-Hee;Park, Hong-Sik;Kim, Hyoun-Ee
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.393-402
    • /
    • 2007
  • Polyaluminocarbosilane was synthesized by direct reaction of polydimethylsilane with aluminum(III)-acetylacetonate in the presence of zeolite catalyst. A fraction of higher molecular weight polycarbosilane was formed due to the binding of aluminium acetylacetonate radicals with the polycarbosilane backbone. Small amount of Si-O-Si bond was observed in the as-prepared polyaluminocarbosilane as the result. Polyaluminocarbosilane fiber was obtained through a melt spinning and was pyrolyzed and sintered into SiC fiber from $1200{\sim}2000^{\circ}C$ under a controlled atmosphere. The nucleation and growth of ${\beta}-SiC$ grains between $1400{\sim}1600^{\circ}C$ are accompanied with nano pores formation and residual carbon generation. Above $1800^{\circ}C$, SiC fiber could be sintered to give a fully crystallized ${\beta}-SiC$ with some ${\alpha}-SiC$.

Study of New Light Source with Nano Carbon Material (나노카본을 이용한 조명용 신광원에 관한 연구)

  • Kim, Kwang-Bok;Kim, Yong-Won;Jung, Han-Gi;Song, Yoon-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.31-34
    • /
    • 2006
  • The characteristic of carbon nano fiber (CNF) as electron emitters was described. Carbon nano fiber (CNF) of herringbone was prepared by thermal chemical vapor deposition(CVD), mixed with binders and conductive materials, and then were formed by screen-printing process. In order to increase effectively field emissions, the surface treatment of rubbing & peel-off was applied to the printed CNF emitters on cathode electrode. The measurements of field emission properties were carried out by using a diode structure inline vacuum chamber. CNF of herringbone type showed good emission properties that a turn on field was as low as $2.5V/{\mu}m$ and current density was as large as $0.15mA/cm^2$ of $4.5V/{\mu}m$ with electric field. After the vacuum packaged panel of 5-inch in diagonal, the measured white brightness was as high as $7000cd/m^2$ at 1900V of anode and 700V of gate voltage.

  • PDF

Influence of laminated orientation on the mechanical and thermal characteristics of carbon-fiber reinforced plastics

  • Shin, Hee-Jae;Kwac, Lee-Ku;Lee, Min-Sang;Kim, Hong-Gun
    • Carbon letters
    • /
    • v.16 no.4
    • /
    • pp.241-246
    • /
    • 2015
  • Rapid industrial development in recent times has increased the demand for light-weight materials with high strength and structural integrity. In this context, carbon fiber-reinforced plastic (CFRP) composite materials are being extensively used. However, laminated CFRPs develop faults during impact because CFRPs are composed of mixed carbon fiber and epoxy. Moreover, their fracturing behavior is very complicated and difficult to interpret. In this paper, the effect of the direction of lamination in CFRP on the absorbed impact energy and impact strength were evaluated, including symmetric ply (0°/0°, −15°/+15°, −30°/+30°, −45°/+45°, and −90°/+90°) and asymmetric ply (0°/15°, 0°/30°, 0°/45°, and 0°/90°), through drop-weight impact tests. Further, the thermal properties of the specimens were measured using an infrared camera. Correlations between the absorbed impact energy, impact strength, and thermal properties as determined by the drop-weight impact tests were analyzed. These analyses revealed that the absorbed impact energy of the specimens with asymmetric laminated angles was greater than that of the specimens with symmetric laminated angles. In addition, the asymmetry ply absorbed more impact energy than the symmetric ply. Finally, the absorbed impact energy was inversely proportional to the thermal characteristics of the specimens.

A study on design for animal X-ray detector using CFRP CNT panel (CFRP CNT 패널을 적용한 동물용 X-ray 디텍터 디자인에 관한 연구)

  • Lee, Suk-Hyun;Kim, Hyun-Sung;Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.264-270
    • /
    • 2020
  • Design was developed through user-oriented service design methodology and survey was conducted on material selection criteria for prototype production to select CFRP (Carbon Fiber Reinforced Plastics) CNT (Carbon Nano Tube), which was applied to animal X-ray detector panel to design product and develop prototype. Completed prototype with the application of CFRP CNT panel was tested in drop test, frontal external pressure test, and dustproof/waterproof performance to confirm that it can be utilized as a portable animal X-ray detector used in outdoor environment.

Adsorption and antibacterial property of impregnated activated carbon fiber (첨착 활성탄소섬유의 흡착 및 항균특성)

  • You, Seung-Han;Kim, Jung-Su;Jang, Hyun-Tae;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5370-5375
    • /
    • 2011
  • To introduce the antibacterial activity, ACF(activated carbon fiber) was impregnated by nano-sized Ag, Mn, and phosphoric acid. It was observed by the SEM analysis that Ag, Mn and phosphoric acid were properly impregnated at the ACF. The impregnated ACF showed lower adsorption performance than the pure ACF. It is found that ACFs impregnated by nano-sized Ag or phosphoric acid have a good antibacterial activity against bacillus cereus and salmonella entaritidis. but in the case of ACF impregnated with Mn, it have not any antibacterial effect on the bacillus cereus and salmonella entaritidis.

Electrical Properties of Carbon Black Composites for Flexible Fiber Heating Element (유연한 섬유상 발열체용 카본블랙 복합소재의 전기적 특성)

  • Park, Ji-Yong;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.405-411
    • /
    • 2015
  • Carbon composites for flexible fiber heating element were examined to improve the electrical conductivity in this study. Carbon composites using carbon black, denka black, super-c, super-p with/without CNF or dispersant such as BCS03 and Sikament-nn were prepared. Carbon composite slurry was coated on plane film and yarns(cotton, polyester) and the performances of prepared heating materials were investigated by checking electrical surface resistance, adhesion strength. The plane heating element using carbon black under natural drying condition($25^{\circ}C$) had better physical properties such as surface resistance(185.3 Ohm/sq) and adhesion strength(above 90%) than those of other carbon composite heating elements. From these results, polyester heating element coated by carbon black showed better electrical line resistance(33.2 kOhm/cm) than cotton heating element. Then, it was found that polyester heating element coated by carbon black with CNF(3 wt%) and BCS03(1 wt%) appeared best properties(0.604 kOhm/cm).

Nonenzymatic Sensor Based on a Carbon Fiber Electrode Modified with Boron-Doped Diamond for Detection of Glucose (보론 도핑 다이아몬드로 표면처리된 탄소섬유 기반의 글루코스 검출용 비효소적 바이오센서)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.606-610
    • /
    • 2019
  • In this study, we demonstrated that the nonenzymatic glucose sensor based on the flexible carbon fiber bundle electrode with BDD nanocomposites (CF-BDD electrode). As a nano seeding method for the deposition of BDD on flexible carbon fiber, electrostatic self-assembly technique was employed. Surface morphology of BDD coated carbon fiber electrode was observed by scanning electron microscopy. And the electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. This CF-BDD electrode exhibited a large surface area, a direct electron transfer between the redox species and the electrode surface and a high catalytic activity, resulting in a wider linear range (3.75~50 mM), a faster response time (within 3 s) and a higher sensitivity (388.8 nA/mM) in comparison to a bare CF electrode. As a durable and flexible electrochemical sensing electrode, this brand new CF-BDD scheme has promising advantages on various electrochemical and wearable sensor applications.

The Electrical Characteristics of the Antistatic Wafer Carrier (대전 방지용 웨이퍼 캐리어의 전기적 특성)

  • Chea, Jong-Yun;Yoon, Jong-Kuk;Kang, Ok-Gu;Ryu, Bong-Jo;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.319-324
    • /
    • 2014
  • The wafer carrier is made of PP, PC, PE resin which have excellent heat and chemical resistance and electrical properties. However, particle generation has become a problem due to static electricity generated in the carrier. Some conductive material such as carbon black (CB) and carbon fiber (CF) are added for the purpose of anti-static, however, additional for motility and particle contamination problems due to high carbon content occurs. In this paper, the electrical characteristics and workability are observed and compared by adding low Carbon Nono Tube(CNT) to each PP, PC and PE resin to solve the problem.