• Title/Summary/Keyword: nano-approach

Search Result 354, Processing Time 0.024 seconds

Electrically conductive nano adhesive bonding: Futuristic approach for satellites and electromagnetic interference shielding

  • Ganesh, M. Gokul;Lavenya, K.;Kirubashini, K.A.;Ajeesh, G.;Bhowmik, Shantanu;Epaarachchi, Jayantha Ananda;Yuan, Xiaowen
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.729-744
    • /
    • 2017
  • This investigation highlights rationale of electrically conductive nano adhesives for its essential application for Electromagnetic Interference (EMI) Shielding in satellites and Lightning Strike Protection in aircrafts. Carbon Nano Fibres (CNF) were functionalized by electroless process using Tollen's reagent and by Plasma Enhanced Chemical Vapour Deposition (PECVD) process by depositing silver on CNF. Different weight percentage of CNF and silver coated CNF were reinforced into the epoxy resin hardener system. Scanning Electron Microscopy (SEM) micrographs clearly show the presence of CNF in the epoxy matrix, thus giving enough evidence to show that dispersion is uniform. Transmission Electron Microscopy (TEM) studies reveal that there is uniform deposition of silver on CNF resulting in significant improvement in interfacial adhesion with epoxy matrix. There is a considerable increase in thermal stability of the conductive nano adhesive demonstrated by Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA). Four probe conductivity meters clearly shows a substantial increase in the electrical conductivity of silver coated CNF-epoxy composite compared to non-coated CNF-epoxy composite. Tensile test results clearly show that there is a significant increase in the tensile strength of silver coated CNF-composites compared to non-coated CNF-epoxy composites. Consequently, this technology is highly desirable for satellites and EMI Shielding and will open a new dimension in space research.

Relative Influence of Surface and Interfacial Defects in Hydrothermally Grown Nanostructured ZnO (수열 합성된 나노구조를 갖는 ZnO 에 대한 표면 및 계면 결함의 상대적인 영향)

  • Park, Cheolmin;Lee, Jihye;So, Hye-Mi;Chang, Won Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.831-835
    • /
    • 2014
  • The relative concentration of surface and interfacial defects in hydrothermally grown ZnO nanostructures was investigated by a comparison of two samples having different growth temperatures via bias voltage sweep rate under laser illumination of 405 and 355 nm. The current of small ZnO nanostructures (growth temperature of $75^{\circ}C$) decreased when induced more slowly bias voltage sweep rate under the laser illumination. In contrast, the current of large ZnO nanostructures (growth temperature of $90^{\circ}C$) increased. This difference in currents indicates the relation of relative defects concentration between surface and interfacial defects of ZnO nanostructure. Our experimental approach has potential applicability in the analysis of influence on defects in ZnO devices.

Radiolytic Synthesis of Ag-Loaded Polystyrene(Ag-PS) Nanoparticles and Their Antimicrobial Efficiency Against Staphylococcus aureus and Klebsiella pneumoniase

  • Oh, Seong-Dae;Byun, Bok-Soo;Lee, Seung-Ho;Choi, Seong-Ho;Kim, Moon-Il;Park, Hyun-Gyu
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.285-290
    • /
    • 2007
  • Ag nanoparticles were distributed onto polystyrene nanoparticle (PS-Ag) beads using two synthetic methodologies. In the first methodology, polystyrene (PS) beads were prepared via emulsion polymerization, with Ag nanoparticles subsequently loaded onto the surface of the PS beads. The polymerization of styrene was radiolytically induced in an ethanol (EtOH)/water medium, generating PS beads. Subsequently, Ag nanoparticles were loaded onto the PS beads via the reduction of Ag ions. The results from the morphological studies, using field emission transmission electron microscopy (FE-TEM), reveal the PS particles were spherical and nanosized, and the average size of the PS spherical particles decreased with increasing volume % of water in the polymerization medium. The size of the PS spherical particles increases with increasing radiation dose for the polymerization. Also, the amount of Ag nanoparticle loading could be increased by increasing the irradiation dose for the reduction of the Ag ions. In the second methodology, the polymerization of styrene and reduction of Ag ions were simultaneously performed by irradiating a solution containing styrene and Ag ions in an EtOH/water medium. Interestingly, the Ag nanoparticles were preferentially homogeneously distributed within the PS particles (not on the surface of the PS particles). Thus, Ag nanoparticles were distributed onto the surface of the PS particles using the first approach, but into the PS clusters of the particles via the second. The antimicrobial efficiency of a cloth coated with the Ag-PS composite nanoparticles was tested against bacteria, such as Staphylococcus aureus and Klebsiella pneumoniase, for 100 water washing cycles.

Effect of Additive Size on the Densification and Thermal Conductivity of AlN Ceramics with MgO-CaO-Al2O3-SiO2 Additives

  • Lee, Hwa-Jun;Cho, Woo-Seok;Kim, Hyeong Jun;Kim, Hyung-Tae;Ryu, Sung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • In this study, we investigate the effect of additive size on the densification and thermal conductivity of AlN ceramics with $MgO-CaO-Al_2O_3-SiO_2$ (MCAS) additives. Micro-sized MCAS powder prepared via melting and nano-sized MCAS powder synthesized via the polymeric complex method are used as sintering additives. We analyze the densification behavior of AlN added with 5 wt.% of MCAS by dilatometry as well as by isothermal sintering in the temperature range of $1300{\sim}1700^{\circ}C$. AlN exhibits higher sinterability with nano-MCAS than with micro-MCAS, and both specimens approach their maximum densities when sintered at $1600^{\circ}C$ for 4 h. The thermal conductivities of AlN with 5 wt% of nano- and micro-MCAS additives sintered at $1600^{\circ}C$ are 82.6 and 32.0 W/mK, respectively. We find that nano-MCAS is more effective in sintering of AlN ceramics at lower temperatures, and thus for enhancing their thermal conductivities.

Effect of Additives on the Characteristics of Amorphous Nano Boron Powder Fabricated by Self-Propagating High Temperature Synthesis (자전연소합성법을 이용한 비정질 나노 붕소 분말 특성에미치는 첨가제의 영향)

  • Joo, Sin Hyong;Nersisyan, Hayk H.;Lee, Tae Hyuk;Cho, Young Hee;Kim, Hong Moule;Lee, Huk Hee;Lee, Jong Hyeon
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.659-665
    • /
    • 2015
  • The self-propagating high temperature synthesis approach was applied to synthesize amorphous boron nano-powders in argon atmospheres. For this purpose, we investigated the characteristics of a thermally induced combustion wave in the $B_2O_3+{\alpha}Mg$ system(${\alpha}=1.0-8.0$) in an argon atmospheres. In this study, the exothermic nature of the $B_2O_3-Mg$ reaction was investigated using thermodynamic calculations. Experimental study was conducted based on the calculation data and the SHS products consisting of crystalline boron and other compounds were obtained starting with a different initial molar ratio of Mg. It was found that the $B_2O_3$ and Mg reaction system produced a high combustion temperature with a rapid combustion reaction. In order to regulate the combustion reaction, NaCl, $Na_2B_4O_7$ and $H_3BO_3$ additives were investigated as diluents. In an experimental study, it was found that all diluents effectively stabilized the reaction regime. The final product of the $B_2O_3+{\alpha}Mg$ system with 0.5 mole $Na_2B_4O_7$ was identified to be amorphous boron nano-powders(< 100 nm).

Quantitative Dispersion Evaluation of Carbon Nanotubes Reinforced Polymer Nano-composites (탄소나노튜브 첨가 고분자 나노복합재료의 정량적 분산도 평가)

  • Lee, Sang-Bok;Jeong, Bo-Hwa;Yi, Jin-Woo;Lee, Won-Oh;Um, Moon-Kwang
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.60-65
    • /
    • 2011
  • In order to maximize the performance of polymer nano-composites, it is essential to understand an effect of a dispersion state on material properties as well as to achieve highly dispersed composites. In this work, a simple quantitative approach to evaluate the degree of dispersion was suggested for carbon nanotube (CNT) embedded polymer nano-composites. Through UV-visible spectroscopy analysis, the transmittance of nano-composites was measured at various dispersion states and it was found that the transmittance reduced as the dispersion state of CNT improved. Based on the results, an effective concentration factor for quantitative evaluation of dispersion state was introduced into the Beer-Lambert transmittance law. The proposed method and parameter to evaluate the degree of dispersion were verified by analyzing the transmittances at different dispersion states of CNT, concentrations of CNT and sample thicknesses.

Fabrication of Organic-Inorganic Nanocomposite Blade for Dicing Semiconductor Wafer (반도체 웨이퍼 다이싱용 나노 복합재료 블레이드의 제작)

  • Jang, Kyung-Soon;Kim, Tae-Woo;Min, Kyung-Yeol;Lee, Jeong-Ick;Lee, Kee-Sung
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.49-55
    • /
    • 2007
  • Nanocomposite blade for dicing semiconductor wafer is investigated for micro/nano-device and micro/nano-fabrication. While metal blade has been used for dicing of silicon wafer, polymer composite blades are used for machining of quartz wafer in semiconductor and cellular phone industry in these days. Organic-inorganic material selection is important to provide the blade with machinability, electrical conductivity, strength, ductility and wear resistance. Maintaining constant thickness with micro-dimension during shaping is one of the important technologies fer machining micro/nano fabrication. In this study the fabrication of blade by wet processing of mixing conducting nano ceramic powder, abrasive powder phenol resin and polyimide has been investigated using an experimental approach in which the thickness differential as the primary design criterion. The effect of drying conduction and post pressure are investigated. As a result wet processing techniques reveal that reliable results are achievable with improved dimension tolerance.

A New Approach to Reduce Geometric Error in FIB Fabrication of Micro Structures (집속이온빔을 이용한 미세구조물 가공의 형상정밀도 향상)

  • Kim K.S.;Jung J.W.;Min B.K.;Lee S.J.;Park C.W.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1186-1189
    • /
    • 2005
  • Focused Ion Beam machining is an attractive approach to produce nano-scale 3D structures. However, like other beam-based manufacturing processes, the redeposition of the sputtered material during the machining deteriorates the geometric accuracy of ion beam machining. In this research a new approach to reduce the geometric error in FIB machining is introduced. The observed redeposition phenomena have been compared with existing theoretical model. Although the redeposition effect has good repeatability the prediction of exact amount of geometric error in ion beam machining is difficult. Therefore, proposed method utilizes process control approach. Developed algorithm measures the redeposition amount after every production cycle and modifies next process plan. The method has been implemented to a real FIB machine and the experimental results demonstrated considerable improvement of five micrometer-sized pocket machining.

  • PDF

Robust Control of Piezo Actuator using Wavelet Networks (웨이블릿 네트워크를 이용한 압전 구동기의 견실제어)

  • Yang, Chang-Kwan;Lim, Joon-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.723-725
    • /
    • 2004
  • An iterative robust control design for PZT using Gaussian wavelet networks is proposed. A Gaussian wavelet network with accurate approximation capability is employed to approximate the nonlinear hysteresis dynamics of PZT systems by using an iterative control algorithm. Depending on the finite number of wavelet basis functions which results in unavoidable approximation errors, a robust control law is provided to guarantee the stability of the closed-loop nano positioning system. Finally, the effectiveness of the robust control approach is illustrated through comparative simulations on a PZT.

  • PDF

Studies of process measurement technology for manufacturing advanced nano devices (첨단 나노소자 공정제어용 측정기술 연구)

  • Cho, Yong Jai
    • Vacuum Magazine
    • /
    • v.2 no.3
    • /
    • pp.4-10
    • /
    • 2015
  • We developed a real-time three-polarizer spectroscopic ellipsometer based on a new data acquisition algorithm and a general data reduction (the process of extracting the ellipsometric sample parameters from the Fourier coefficients). The data acquisition algorithm measures Fourier coefficients of radiant flux waveform accurately and precisely. The general data reduction is introduced to represent the analytic functions of the standard uncertainties of the ellipsometric sample parameters, and the extracted theoretical values closely agree with the corresponding experimental data. Our approach can be used for optimization of measurement conditions, instrumentation, simulation, standardization, laboratory accreditation, and metrology.