• 제목/요약/키워드: nano structure

검색결과 1,957건 처리시간 0.03초

Strong Correlation Effect by the Rare Earth Substitution on Thermoelectric Material Bi2Te3 ; in GGA+U Approach

  • Quang, Tran Van;Kim, Miyoung
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2013년도 임시총회 및 하계학술연구발표회
    • /
    • pp.19-20
    • /
    • 2013
  • Thermoelectic properties of the typical thermoelectric host materials, the tellurides and selenides, are known to be noticeably changed by their volume change due to the strain [1]. In the bismuth telluride ($Bi_2Te_3$) crystal, a substitution of rare-earth element by replacing one of the Bi atoms may cause the change of the lattice parameters while remaining the rhombohedral structure of the host material. Using the first-principles approach by the precise full potential linearized augmented plane wave (FLAPW) method [2], we investigated the Ce substitution effect on the thermoelectric transport coefficients for the bismuth telluride, employing Boltzmann's equation in a constant relaxation-time approach fed with the FLAPW wave-functions within the rigid band approximation. Depending on the real process of re-arrangement of atoms in the cell to reach the equilibrium state, $CeBiTe_3$ was found to manifest a metal or a narrow bandgap semiconductor. This feature along with the strong correlation effect originated by the 4f states of Ce affect significantly on the thermoelectric properties. We showed that the position of the strongly localized f-states in energy scale (Fig. 1, f-states are shaded) was found to alter critically the transport properties in this material suggesting an opportunity to improve the thermoelectric efficiency by tuning the external strain which may changing the location of the f-sates.

  • PDF

수열합성법으로 제막한 MoO3 나노 구조체를 정공수송층으로 갖는 페로브스카이트 태양전지 특성분석 (Characteristics of Perovskite Solar Cell with Nano-Structured MoO3 Hole Transfer Layer Prepared by Hydrothermal Synthesis)

  • 송재관;안준섭;한은미
    • 한국재료학회지
    • /
    • 제30권2호
    • /
    • pp.81-86
    • /
    • 2020
  • MoO3 metal oxide nanostructure was formed by hydrothermal synthesis, and a perovskite solar cell with an MoO3 hole transfer layer was fabricated and evaluated. The characteristics of the MoO3 thin film were analyzed according to the change of hydrothermal synthesis temperature in the range of 100 ℃ to 200 ℃ and mass ratio of AMT : nitric acid of 1 : 3 ~ 15 wt%. The influence on the photoelectric conversion efficiency of the solar cell was evaluated. Nanorod-shaped MoO3 thin films were formed in the temperature range of 150 ℃ to 200 ℃, and the chemical bonding and crystal structure of the thin films were analyzed. As the amount of nitric acid added increased, the thickness of the thin film decreased. As the thickness of the hole transfer layer decreased, the photoelectric conversion efficiency of the perovskite solar cell improved. The maximum photoelectric conversion efficiency of the perovskite solar cell having an MoO3 thin film was 4.69 % when the conditions of hydrothermal synthesis were 150 ℃ and mass ratio of AMT : nitric acid of 1 : 12 wt%.

Nanofabrication of Microbial Polyester by Electrospinning Promotes Cell Attachment

  • Lee, Ik-Sang;Kwon, Oh-Hyeong;Wan Meng;Kang, Inn-Kyu;Yoshihiro Ito
    • Macromolecular Research
    • /
    • 제12권4호
    • /
    • pp.374-378
    • /
    • 2004
  • The biodegradable and biocompatible poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a copolymer of microbial polyester, was fabricated as nanofibrous mats by electrospinning. Image analysis of the electrospun nanofibers fabricated from a 2 wt% 2,2,2-trifluoroethanol solution revealed a unimodal distribution pattern of fiber diameters with an observed average diameter of ca. 185 nm. The fiber diameter of electrospun fabrics could be controlled by adjusting the electro spinning parameters, including the solvent composition, concentration, applied voltage, and tip-to-collector distance. Chondrocytes derived from rabbit ear were cultured on a PHBV cast film and an electrospun PHBV nano-fibrous mat. After incubation for 2 h, the percentages of attached chondrocytes on the surfaces of the flat PHBV film and the PHBV nanofibrous mat were 19.0 and 30.1 %, respectively. On the surface of the electrospun PHBV fabric, more chondrocytes were attached and appeared to have a much greater spreaded morphology than did that of the flat PHBV cast film in the early culture stage. The electro spun PHBV nanofabric provides an attractive structure for the attachment and growth of chondrocytes as cell culture surfaces for tissue engineering.

다층박막법을 이용한 표면 젖음성 제어 기술 동향 (Technology Trend of surface Wettability Control Using Layer-by-Layer Assembly Technique)

  • 성충현
    • 접착 및 계면
    • /
    • 제18권4호
    • /
    • pp.171-178
    • /
    • 2017
  • 최근 들어, 다층박막법(Layer-by-Layer(LbL) assembly)을 이용한 표면 젖음성 제어 기술이 큰 관심을 받고 있다. 다층박막법은 고분자, 계면활성제, 나노 입자 등과 같은 다양한 재료를 이용하여 수직 구조와 표면 특성을 나노 및 마이크로 스케일로 제어할 수 있는 다기능적이며 친환경적인 제조방법이다. 본 논문에서는 다층박막법을 이용하여 표면 특성을 제어하는 기술의 최근 동향을 살펴보고자 한다. 특히, 초발수, 초친수, 초발유/초친수 LbL 표면의 제조와 응용에 대한 기술 동향과 연구 결과를 기술한다. 또한, omniphobic, 자가-치유, 지능형 및 외부 반응형 표면 등 최근 각광을 받고 있는 분야의 기본적인 원리와 제조 방법 등에 대해 소개하고자 한다.

Morphology Development in a Range of Nanometer to Micrometer in Sulfonated Poly(ethylene terephthalate) Ionomer

  • Lee, Chang-Hyung;Inoue, Takashi;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권4호
    • /
    • pp.580-586
    • /
    • 2002
  • We investigated the effect of ionic component on crystalline morphology development during isothermal annealing in a sodium neutralized sulfonated poly(ethylene terephthalate) ionomer (Ion-PET) by time-resolved small-angle x-ray scattering (TR-SAX S) using synchrotron radiation. At early stage in Ion-PET, SAXS intensity at a low annealing temperature (Ta = 120 $^{\circ}C)$ decreased monotonously with scattering angle for a while. Then SAXS profile showed a peak and the peak position progressively moved to wider angles with isothermal annealing time. Finally, the peak intensity decreased, shifting the peak angle to wider angle. It is revealed that ionic aggregates (multiplets structure) of several nm, calculated by Debye-Bueche plot, are formed at early stage. They seem to accelerate the crystallization rate and make fine crystallites without spherulite formation (supported by optical microscopy observation). From decrease of peak intensity in SAXS,it is suggested that new lamellae are inserted between the preformed lamellae so that the concentration of ionic multiplets in amorphous region decreases to lower the electron density difference between lamellar crystal and amorphous region. In addition, analysis on the annealing at a high temperature (Ta = 210 $^{\circ}C)$ by optical microscopy, light scattering and transmission electron microscopy shows a formation of spherulite, no ionic aggregates, the retarded crystallization rate and a high level of lamellar orientation.

Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007

  • Sun, Ho-Sung;Lee, Sun-Yeoul;Lee, Choon-Shil
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권2호
    • /
    • pp.450-462
    • /
    • 2008
  • The physical chemistry (PC) articles published in the Bulletin of the Korean Chemical Society (BKCS) from 2003 to 2007 are surveyed, and in-depth content analysis was conducted to classify the PC articles into 12 topics used in The Journal of Physical Chemistry (JPC). The PC articles published in the Journal of the American Chemical Society (JACS) in 2007 are also surveyed. The extensive summary of all PC articles in BKCS for the last five years reveals the current trend of physical chemistry research in Korea. The comparison study with the JACS shows that the proportion of PC articles among all articles published in BKCS (16%) is slightly higher than that of JACS (11%), and the non-Korean authorship ratio of BKCS (12%) is very low compared with the non-US authorship of JACS (52%). From the comparison study with articles published in JPC in 2007, it is found that BKCS disseminates various topics of physical chemistry researches adequately. In particular, BKCS most frequently published PC articles in molecular structure and spectroscopy topics, whereas JPC published surface chemistry and nano-chemistry articles most frequently. It is concluded that BKCS should publish more articles to be a leading journal, and it is suggested that the SCI impact factor of BKCS must be increased by improving the electronic version of BKCS.

다양한 매체형 분쇄기를 이용한 건식 분쇄공정에서 장비의 표준화를 위한 분쇄실험의 비교 연구 (Comparative Study for the Standardization of Grinding Equipment During Dry Grinding Process by Various Grinding Mills)

  • 보르암갈란;사꾸라기시오리;이재현;최희규
    • 한국재료학회지
    • /
    • 제25권6호
    • /
    • pp.305-316
    • /
    • 2015
  • The study of grinding behavior characteristics on the metal powders has recently gained scientific interest due to their useful applications to enhance advanced nano materials and components. This could significantly improve the property of new mechatronics integrated materials and components. So, a new evaluation method for standardizing grinding equipment and a comparative study for the grinding experiment during the grinding process with various grinding mills were investigated. The series of grinding experiments were carried out by a traditional ball mill, stirred ball mill, and planetary ball mill with various experimental conditions. The relationship between the standardization of equipment and experimental results showed very significant conclusions. Furthermore, the comparative study on the grinding experiment, which investigated changes in particle size, particle morphology, and crystal structure of materials with changes in experimental conditions for grinding equipment, found that the value of particle size distribution is related to the various experimental conditions as a revolution speed of grinding mill and media size.

유기 개질제의 종류와 혼합 시간에 따른 불포화 폴리에스터/ 몬모릴로나이트 나노복합체의 제조 및 특성 (Effect of Organic Modifiers and Mixing Times on the Properties of Unsaturated Polyester/Montmorillonite Nanocomposite)

  • 김호겸;이동호;서관호;김우식;박수영;민경은
    • 폴리머
    • /
    • 제27권6호
    • /
    • pp.589-595
    • /
    • 2003
  • 서로 다른 종류의 유기 개질제가 층간에 삽입된 세 종류의 몬모릴로나이트 (MMT)를 사용하여 불포화 폴리에스터 (UP)/MMT 나노복합체를 제조하고 유기 개질제의 화학적 구조와 각 성분들의 최종 혼합시간이 최종 나노복합체의 형태구조와 각종 물리적 특성에 미치는 영향을 조사하였다. 최종 혼합 시간은 MMT의 종류에 관계없이 나노복합체의 형태구조와 각종 물성에 별다른 영향을 미치지 못하는 것으로 확인되었으며, MMT의 유기 개질제에 두 개의 수산화기가 포함된 Cloisite 30B의 경우에는 나머지 두 종류의 MMT에 비해 형태구조나 고무 평탄 영역에서의 전단 모듈러스 및 굴곡강도 등은 우수한 것으로 나타났다 하지만 인장 강도나 열분해 거동, 유리 전이 온도 등은 별다른 차이를 보이지 않았으며, 또한 MMT의 함량에 따른 각종 특성의 선형적인 증가도 관찰되지 않았다.

Periodicity Dependence of Magnetic Anisotropy and Magnetization of FeCo Heterostructure

  • Kim, Miyoung
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.6-11
    • /
    • 2016
  • The magnetic anisotropy energy (MAE) and the saturation magnetization $B_s$ of (110) $Fe_nCo_n$ heterostructures with n = 1, 2, and 3 are investigated in first-principles within the density functional theory by using the precise full-potential linearized augmented plane wave (FLAPW) method. We compare the results employing two different exchange correlation potentials, that is, the local density approximation (LDA) and the generalized gradient approximation (GGA), and include the spin-orbit coupling interaction of the valence states in the second variational way. The MAE is found to be enhanced significantly compared to those of bulk Fe and Co and the magnetic easy axis is in-plane in agreement with experiment. Also the MAE exhibits the in-plane angle dependence with a two-fold anisotropy showing that the $[1{\overline{I}}0]$ direction is the most favored spin direction. We found that as the periodicity increases, (i) the saturation magnetization $B_s$ decreases due to the reduced magnetic moment of Fe far from the interface, (ii) the strength of in-plane preference of spin direction increases yielding enhancement of MAE, and (iii) the volume anisotropy coefficient decreases because the volume increase outdo the MAE enhancement.

Analysis of Mechanical Characteristics of Polymer Sandwich Panels Containing Injection Molded and 3D Printed Pyramidal Kagome Cores

  • Yang, K.M.;Park, J.H.;Choi, T.G.;Hwang, J.S.;Yang, D.Y.;Lyu, M.-Y.
    • Elastomers and Composites
    • /
    • 제51권4호
    • /
    • pp.275-279
    • /
    • 2016
  • Additive manufacturing or 3D printing is a new manufacturing process and its application is getting growth. However, the product qualities such as mechanical strength, dimensional accuracy, and surface quality are low compared with conventional manufacturing process such as molding and machining. In this study not only mechanical characteristics of polymer sandwich panel having three dimensional core layer but also mechanical characteristics of core layer itself were analyzed. The shape of three dimensional core layer was pyramidal kagome structure. This core layer was fabricated by two different methods, injection molding with PP resin and material jetting type 3D printing with acrylic photo curable resin. The material for face sheets in the polymer sandwich panel was PP. Maximum load, stiffness, and elongation at break were examined for core layers fabricated by two different methods and also assembled polymer sandwich panels. 3D printed core showed brittle behavior, but the brittleness decreased in polymer sandwich panel containing 3D printed core. The availability of 3D printed article for the three dimensional core layer of polymer sandwich panel was verified.