• 제목/요약/키워드: nano structure

Search Result 1,957, Processing Time 0.033 seconds

Seasonal phytoplankton dynamics in oligotriphic offshore water of Dokdo, 2018 (2018년 독도 주변 빈영양 수괴에서 계절별 식물플랑크톤 동태)

  • Lee, Minji;Kim, Yun-Bae;Kang, Jung Hoon;Park, Chan Hong;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.1
    • /
    • pp.19-30
    • /
    • 2019
  • To investigate the characteristics of seasonal environment and phytoplankton community structure in the coastal area of Dokdo, a survey of Dokdo around waters was conducted during the four seasons. Phytoplankton of 4 phylum 72 species in four seasons were collected in Dokdo around water. The seasonal mean abundance of phytoplankton were $3.32{\times}10^4cells\;L^{-1}$ in winter, $1.04{\times}10^4cells\;L^{-1}$ in spring, $0.28{\times}10^4cells\;L^{-1}$ in summer, and $4.86{\times}10^4cells\;L^{-1}$ in autumn in Dokdo around water. During winter, the diatoms Chaetoceros spp. had dominated. During spring, when the nutrients in the euphotic layer were depleted, the nano-flagellates and Cryptomonas appeared at surface layer. In summer, the abundance of phytoplankton was relatively low, which lead to occurrence of diatoms such as genus of Chaetoceros, Rhizosolenia, and Skeletonema. In autumn, Pseudo-nitzschia spp. was the most dominant species and tropical species such as Amphisolenia sp. and Ornithocercus magnificus were observed, implying that they may have introduced within warm water current such as Kurosiwo Current. Therefore, although natural phytoplankton communities in the vicinity water of Dokdo are mainly influenced by Tsushima Warm Current branched Kurosiwo Current, their population dynamics was affected on the spatio-temporal change of physicochemical factors by short-term wind events, namely "island effect". Long-term survey research is needed to facilitate food-web response in marine ecosystem associated with phytoplankton biomass and physicochemical factors including the warm water current in oligotrophic offshore water of Dokdo, which may have significant role for sustainable use of Dokdo.

3-D Rat Hepatocytes' Culture on Polystyrene Nanofibrous Scaffold (폴리스티렌 나노섬유상에서의 간세포의 3차원 배양)

  • Kim, Young-Jin;Ahn, Chang-Hyun;Oh, Hwan-Hee;Kim, Young-Jin;Yoon, Kwan-Han;Kang, Inn-Kyu;Kwon, Oh-Hyeong
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.131-137
    • /
    • 2008
  • We have fabricated polystyrene (PS) nanofibrous scaffold for hepatocyte culture by electrospinning method and subsequently coated with specific ligand of Poly[N-p-vinylbenzyl-O-$\beta$-D-galactopyranocyl-($1{\rightarrow}4$)-D-gluconamide](PVLA) to enhance hepatocytes attachment. Rat hepatocytes behavior on the PVLA-coated and non-coated PS nanofibrous matrices have been investigated. Electrospun PS nanofiber structures revealed randomly aligned fibers with average diameter of 500 nm. It is observed that PS nanofibrous matrix could incorporate many cells into the interior of the matrix probably due to the suitable pore size. Cell viabilities cultured on PVLA-coated PS nanofibrous mats were maintained for 3 weeks, while it was decreased rapidly on PVLA-coated PS dishes. High hepatic functions especially for albumin secretion and ammonia removal were maintained at least for 2 weeks on nanofibrous mats but rapidly decreased on flat PS dishes. These results indicate that nanofibrous structure enabled 3-D culture with high level of cell-cell contact results in providing cell-cell communications and subsequent long-term maintenance of specific cell functions.

Hydrogen and Ethanol Gas Sensing Properties of Mesoporous P-Type CuO

  • Choi, Yun-Hyuk;Han, Hyun-Soo;Shin, Sun;Shin, Seong-Sik;Hong, Kug-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.222-222
    • /
    • 2012
  • Metal oxide gas sensors based on semiconductor type have attracted a great deal of attention due to their low cost, flexible production and simple usability. However, most works have been focused on n-type oxides, while the characteristics of p-type oxide gas sensors have been barely studied. An investigation on p-type oxides is very important in that the use of them makes possible the novel sensors such as p-n diode and tandem devices. Monoclinic cupric oxide (CuO) is p-type semiconductor with narrow band gap (~1.2 eV). This is composed of abundant, nontoxic elements on earth, and thus low-cost, environment-friendly devices can be realized. However, gas sensing properties of neat CuO were rarely explored and the mechanism still remains unclear. In this work, the neat CuO layers with highly ordered mesoporous structures were prepared by a template-free, one-pot solution-based method using novel ink solutions, formulated with copper formate tetrahydrate, hexylamine and ethyl cellulose. The shear viscosity of the formulated solutions was 5.79 Pa s at a shear rate of 1 s-1. The solutions were coated on SiO2/Si substrates by spin-coating (ink) and calcined for 1 h at the temperature of $200{\sim}600^{\circ}C$ in air. The surface and cross-sectional morphologies of the formed CuO layers were observed by a focused ion beam scanning electron microscopy (FIB-SEM) and porosity was determined by image analysis using simple computer-programming. XRD analysis showed phase evolutions of the layers, depending on the calcination temperature, and thermal decompositions of the neat precursor and the formulated ink were investigated by TGA and DSC. As a result, the formation of the porous structures was attributed to the vaporization of ethyl cellulose contained in the solutions. Mesoporous CuO, formed with the ink solution, consisted of grains and pores with nano-meter size. All of them were strongly dependent on calcination temperature. Sensing properties toward H2 and C2H5OH gases were examined as a function of operating temperature. High and fast responses toward H2 and C2H5OH gases were discussed in terms of crystallinity, nonstoichiometry and morphological factors such as porosity, grain size and surface-to-volume ratio. To our knowledge, the responses toward H2 and C2H5OH gases of these CuO gas sensors are comparable to previously reported values.

  • PDF

First-principles Study on the Magnetic Properties of Gd doped Bithmuth-Telluride (Gd 도핑된 비스무스 텔루라이드의 자기적 성질에 대한 제일원리 계산 연구)

  • Van Quang, Tran;Kim, Miyoung
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.2
    • /
    • pp.39-44
    • /
    • 2016
  • Determination of the structural, electronic, and magnetic properties of the magnetically doped bismuth-telluride alloys are drawing lots of interest in the fields of the thermoelectric application as well as the research on magnetic interaction and topological insulator. In this study, we performed the first-principles electronic structure calculations within the density functional theory for the Gd doped bismuth-tellurides in order to study its magnetic properties and magnetic phase stability. All-electron FLAPW (full-potential linearized augmented plane-wave) method is employed and the exchange correlation potentials of electrons are treated within the generalized gradient approximation. In order to describe the localized f-electrons of Gd properly, the Hubbard +U term and the spin-orbit coupling of the valence electrons are included in the second variational way. The results show that while the Gd bulk prefers a ferromagnetic phase, the total energy differences between the ferromagnetic and the antiferromagnetic phases of the Gd doped bismuth-telluride alloys are about ~1meV/Gd, indicating that the stable magnetic phase may be changed sensitively depending on the structural change such as defects or strains.

Graphene Oxide (GO) Layered Structure Ion Exchange Membrane Application for Vanadium Redox Flow Battery (VRB) System Study (산화그라핀 (Graphene Oxide, GO)이 코팅된 양이온 교환막을 용한 바나듐 레독스 흐름 전지 (Vanadium Redox Flow attery, VRB) 시스템에 관한 연구)

  • Lee, Kwan Ju;Chu, Young Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.94-102
    • /
    • 2014
  • Cation exchange membrane (Nafion) was modified to reduce the vanadium ion permeation through the membrane and to increase the vanadium redox flow battery (VRB) system performance by coating the graphene oxide (GO) which has nano-plate like morphology. Modified membrane properties were studied by measuring the ion exchange capacity (I.E.C), water uptake and proton conductivity. The thickness of the coated layer on the surface of the Nafion membrane was observed as $0.93{\mu}m$ by SEM. Proton conductivity and vanadium ion permeability of the modified membrane were decreased to 27% and 25% compared to that of the commercial Nafion membrane respectively. VRB single cell performance test was performed to compare the system performance of the VRB applied with commercial Nafion membrane and modified membrane. VRB system applied with modified membrane showed higher coulombic efficiency and energy efficiency than the VRB system applied with the commercial Nafion membrane due to the reduction of the vanadium ion permeation. From these result, we could suggest that the membrane modification by coating the GO on the surface of the Nafion membrane could be one of the promising strategies to reduce the vanadium ion permeation and to increase the VRB system performance effectively.

Involvement of F-Actin Cytoskeleton for Microvilli Formation of Jurkat T Lymphocyte (F-actin cytoskeleton이 Jurkat T 림파구의 microvilli 형성에 미치는 영향)

  • Lee, Jae-Seol;Kim, Hae-Young;Son, Gi-Ae;Kim, Ji-Eun;Moon, Kyoung-Mi;Kim, Kwang-Hyeon;Choi, Woo-Bong;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.21 no.10
    • /
    • pp.1401-1406
    • /
    • 2011
  • Morphological changes in immune cells occur due to pathogen infection and natural circulation. T cells produce uropod, filopodia, lamellipodia, and microvilli for inflammation, immunosurvelliance, migration, and diapedesis. Short finger-like microvilli cover the surfaces of circulating mammalian immune cells. The surface features of monocytes and neutrophils are quite different, containing membrane ruffles as their predominant structure. In this study, we present the involvement of actin cytoskeleton regarding T lymphocyte microvilli. From analysis of scanning electron micrographs, Jurkat T lymphocyte microvilli was observed to rapidly disassemble when exposed to the actin-sequestering molecule, cytochalasin D. In contrast to cytochalasin D treatment, we found that median microvillar thickness was enlarged on Jurkat T lymphocytes treated with PMA via Lin-11, Isl-1, Mec-3 Kinase (LIMK) and cofilin signaling. In addition, actin cytoskeleton was involved in polarity formation in EL4 T lymphocytes. These results suggest that microvilli formation or polarity of T lymphocytes are involved in actin cytoskeleton dynamics.

Study of Localized Surface Plasmon Polariton Effect on Radiative Decay Rate of InGaN/GaN Pyramid Structures

  • Gong, Su-Hyun;Ko, Young-Ho;Kim, Je-Hyung;Jin, Li-Hua;Kim, Joo-Sung;Kim, Taek;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.184-184
    • /
    • 2012
  • Recently, InGaN/GaN multi-quantum well grown on GaN pyramid structures have attracted much attention due to their hybrid characteristics of quantum well, quantum wire, and quantum dot. This gives us broad band emission which will be useful for phosphor-free white light emitting diode. On the other hand, by using quantum dot emission on top of the pyramid, site selective single photon source could be realized. However, these structures still have several limitations for the single photon source. For instance, the quantum efficiency of quantum dot emission should be improved further. As detection systems have limited numerical aperture, collection efficiency is also important issue. It has been known that micro-cavities can be utilized to modify the radiative decay rate and to control the radiation pattern of quantum dot. Researchers have also been interested in nano-cavities using localized surface plasmon. Although the plasmonic cavities have small quality factor due to high loss of metal, it could have small mode volume because plasmonic wavelength is much smaller than the wavelength in the dielectric cavities. In this work, we used localized surface plasmon to improve efficiency of InGaN qunatum dot as a single photon emitter. We could easily get the localized surface plasmon mode after deposit the metal thin film because lnGaN/GaN multi quantum well has the pyramidal geometry. With numerical simulation (i.e., Finite Difference Time Domain method), we observed highly enhanced decay rate and modified radiation pattern. To confirm these localized surface plasmon effect experimentally, we deposited metal thin films on InGaN/GaN pyramid structures using e-beam deposition. Then, photoluminescence and time-resolved photoluminescence were carried out to measure the improvement of radiative decay rate (Purcell factor). By carrying out cathodoluminescence (CL) experiments, spatial-resolved CL images could also be obtained. As we mentioned before, collection efficiency is also important issue to make an efficient single photon emitter. To confirm the radiation pattern of quantum dot, Fourier optics system was used to capture the angular property of emission. We believe that highly focused localized surface plasmon around site-selective InGaN quantum dot could be a feasible single photon emitter.

  • PDF

Sol-Gel Synthesis, Crystal Structure, Magnetic and Optical Properties in ZnCo2O3 Oxide

  • Das, Bidhu Bhusan;Barman, Bittesh
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.453-458
    • /
    • 2019
  • Synthesis of ZnCo2O3 oxide is performed by sol-gel method via nitrate-citrate route. Powder X-ray diffraction (XRD) study shows monoclinic unit cell having lattice parameters: a = 5.721(1) Å, b = 8.073(2) Å, c = 5.670(1) Å, β = 93.221(8)°, space group P2/m and Z = 4. Average crystallite sizes determined by Scherrer equation are the range ~14-32 nm, whereas SEM micrographs show nano-micro meter size particles formed in ZnCo2O3. Endothermic peak at ~798 K in the Differential scanning calorimetric (DSC) trace without weight loss could be due to structural transformation and the endothermic peak ~1143 K with weight loss is due to reversible loss of O2 in air atmosphere. Energy Dispersive X-ray (EDX) analysis profile shows the presence of elements Zn, Co and O which indicates the purity of the sample. Magnetic measurements in the range of +12 kOe to -12 kOe at 10 K, 77 K, 120 K and at 300 K by PPMS-II Physical Property Measurement System (PPMS) shows hysteresis loops having very low values of the coercivity and retentivity which indicates the weakly ferromagnetic nature of the oxide. Observed X-band EPR isotropic lineshapes at 300 K and 77 K show positive g-shift at giso ~2.230 and giso ~2.217, respectively which is in agreement with the presence of paramagnetic site Co2+(3d7) in the oxide. DC conductivity value of 2.875 ×10-8 S/cm indicates very weakly semiconducting nature of ZnCo2O3 at 300 K. DRS absorption bands ~357 nm, ~572 nm, ~619 nm and ~654 nm are due to the d-d transitions 4T1g(4F)→2Eg(2G), 4T1g(4F)→4T1g(4P), 4T1g(4F)→4A2g(4F), 4T1g(4F)→4T2g(4F), respectively in octahedral ligand field around Co2+ ions. Direct band gap energy, Eg~ 1.5 eV in the oxide is obtained by extrapolating the linear part of the Tauc plot to the energy axis indicates fairly strong semiconducting nature of ZnCo2O3.

Metal Oxide Thin Film Transistor with Porous Silver Nanowire Top Gate Electrode for Label-Free Bio-Relevant Molecules Detection

  • Yu, Tae-Hui;Kim, Jeong-Hyeok;Sang, Byeong-In;Choe, Won-Guk;Hwang, Do-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.268-268
    • /
    • 2016
  • Chemical sensors have attracted much attention due to their various applications such as agriculture product, cosmetic and pharmaceutical components and clinical control. A conventional chemical and biological sensor is consists of fluorescent dye, optical light sources, and photodetector to quantify the extent of concentration. Such complicated system leads to rising cost and slow response time. Until now, the most contemporary thin film transistors (TFTs) are used in the field of flat panel display technology for switching device. Some papers have reported that an interesting alternative to flat panel display technology is chemical sensor technology. Recent advances in chemical detection study for using TFTs, benefits from overwhelming progress made in organic thin film transistors (OTFTs) electronic, have been studied alternative to current optical detection system. However numerous problems still remain especially the long-term stability and lack of reliability. On the other hand, the utilization of metal oxide transistor technology in chemical sensors is substantially promising owing to many advantages such as outstanding electrical performance, flexible device, and transparency. The top-gate structure transistor indicated long-term atmosphere stability and reliability because insulator layer is deposited on the top of semiconductor layer, as an effective mechanical and chemical protection. We report on the fabrication of InGaZnO TFTs with silver nanowire as the top gate electrode for the aim of chemical materials detection by monitoring change of electrical properties. We demonstrated that the improved sensitivity characteristics are related to the employment of a unique combination of nano materials. The silver nanowire top-gate InGaZnO TFTs used in this study features the following advantages: i) high sensitivity, ii) long-term stability in atmosphere and buffer solution iii) no necessary additional electrode and iv) simple fabrication process by spray.

  • PDF

Impedance Spectroscopy Analysis on the LaAlO3/SrxCa1-xTiO3/SrTiO3 Hetero-Oxide Interface System

  • Park, Da-Hee;Kwon, Kyoung-Woo;Park, Chan-Rok;Choi, Yoo-Jin;Bae, Seung-Muk;Baek, Senug-Hyub;Kim, Jin-Sang;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.188.2-188.2
    • /
    • 2015
  • The presence of the conduction interface in epitaxial $LaAlO_3/SrTiO_3$ thin films has opened up challenging applications which can be expanded to next-generation nano-electronics. The metallic conduction path is associated with two adjacent insulating materials. Such device structure is applicable to frequency-dependent impedance spectroscopy. Impedance spectroscopy allows for simultaneous measurement of resistivity and dielectric constants, systematic identification of the underlying electrical origins, and the estimation of the electrical homogeneity in the corresponding electrical origins. Such unique capability is combined with the intentional control on the interface composition composed of $SrTiO_3$ and $CaTiO_3$, which can be denoted by $SrxCa1-_xTiO_3$. The underlying $Sr_xCa1-_xTiO_3$ interface was deposited using pulsed-laser deposition, followed by the epitaxial $LaAlO_3$ thin films. The platinum electrodes were constructed using metal shadow masks, in order to accommodate 2-point electrode configuration. Impedance spectroscopy was performed as the function of the relative ratio of Sr to Ca. The respective impedance spectra were analyzed in terms of the equivalent circuit models. Furthermore, the impedance spectra were monitored as a function of temperature. The ac-based characterization in the 2-dimensional conduction path supplements the dc-based electrical analysis. The artificial manipulation of the interface composition will be discussed towards the electrical application of 2-dimensional materials to the semiconductor devices in replacement for the current Si-based devices.

  • PDF