Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.10.1401

Involvement of F-Actin Cytoskeleton for Microvilli Formation of Jurkat T Lymphocyte  

Lee, Jae-Seol (Department of Biomaterial control, Dong Eui University)
Kim, Hae-Young (Department of Nano Medical Science, Dankook Unversity)
Son, Gi-Ae (Department of Biotechnology & Bioengineering, College of Engineering, Dong Eui University)
Kim, Ji-Eun (Department of Biotechnology & Bioengineering, College of Engineering, Dong Eui University)
Moon, Kyoung-Mi (Department of Biomaterial control, Dong Eui University)
Kim, Kwang-Hyeon (Department of Life Science & Biotechnology, College of Life Science, Dong Eui University)
Choi, Woo-Bong (Department of Biotechnology & Bioengineering, College of Engineering, Dong Eui University)
Lee, Jong-Hwan (Department of Biotechnology & Bioengineering, College of Engineering, Dong Eui University)
Publication Information
Journal of Life Science / v.21, no.10, 2011 , pp. 1401-1406 More about this Journal
Abstract
Morphological changes in immune cells occur due to pathogen infection and natural circulation. T cells produce uropod, filopodia, lamellipodia, and microvilli for inflammation, immunosurvelliance, migration, and diapedesis. Short finger-like microvilli cover the surfaces of circulating mammalian immune cells. The surface features of monocytes and neutrophils are quite different, containing membrane ruffles as their predominant structure. In this study, we present the involvement of actin cytoskeleton regarding T lymphocyte microvilli. From analysis of scanning electron micrographs, Jurkat T lymphocyte microvilli was observed to rapidly disassemble when exposed to the actin-sequestering molecule, cytochalasin D. In contrast to cytochalasin D treatment, we found that median microvillar thickness was enlarged on Jurkat T lymphocytes treated with PMA via Lin-11, Isl-1, Mec-3 Kinase (LIMK) and cofilin signaling. In addition, actin cytoskeleton was involved in polarity formation in EL4 T lymphocytes. These results suggest that microvilli formation or polarity of T lymphocytes are involved in actin cytoskeleton dynamics.
Keywords
Microvilli; Jurkat T cell; Actin; LIMK; Cofilin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Spiering, D. and L. Hodgson. 2011. Dynamics of the Rho-family small GTPases in actin regulation and motility. Cell Adh. Migr. 5, 170-180.   DOI
2 von Andrian, U. H., S. R. Hasslen, R. D. Nelson, S. L. Erlandsen, and E. C. Butcher. 1995. A central role for microvillous receptor presentation in leukocyte adhesion under flow. Cell 82, 989-999.   DOI
3 Svitkina, T. M., E. A. Bulanova, O. Y. Chaga, D. M. Vignjevic, S. Kojima, J. M. Vasiliev, and G. G. Borisy. 2003. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160, 409-421.   DOI
4 Yamane, J., H. Ohnishi, H, Sasaki, H. Narimatsu, H. Ohgushi, and K. Tachibana. 2011. Formation of microvilli and phosphorylation of ERM family proteins by CD43, a potent inhibitor for cell adhesion: cell detachment is a potential cue for ERM phosphorylation and organization of cell morphology. Cell Adh. Migr. 5, 119-132.   DOI
5 Faix, J., D. Breitsprecher, T. E. Stradal, and K. Rottner. 2009. Filopodia: complex models for simple rods. Int. J. Biochem. Cell Biol. 41, 1656-1664.   DOI
6 Jean-Mairet, R. M., C. López-Menéndez, L. Sánchez-Ruiloba, S. Sacristan, M. Rodriguez-Martinez, L. Riol-Blanco, P. Sanchez-Mateos, F. Sanchez-Madrid, J. L. Rodriguez-Fernandez, M. R. Campanero, and T. Iglesias. 2011. The neuronal protein Kidins220/ARMS associates with ICAM-3 and other uropod components and regulates T-cell motility. Eur. J. Immunol. 41, 1035-1046.   DOI
7 Nijhara, R., P. B. van Hennik, M. L. Gignac, M. J. Kruhlak, P. L. Hordijk, J. Delon, and S. Shaw. 2004. Rac1 mediates collapse of microvilli on chemokine-activated T lymphocytes. J. Immunol. 173, 4985-4993.   DOI
8 Oh, J. Y., H. J. Seo, J. S. Lee, H. Y. Kim, K. M. Moon, W. B. Choi, B. W. Kim, and J. H. Lee. 2010. Involvement of Small GTPase RhoA for Microvilli Formation in Polartiy T Cell and Non-polarity T Cell. Cancer Prevention Research 15, 277-284.
9 Polliack, A. 1981. The contribution of scanning electron microscopy in haematology: its role in defining leucocyte and erythrocyte disorders. J. Microscopy 123, 177-187.   DOI
10 Pavalko, F. M., D. M. Walker, L. Graham, M. Goheen, C. M. Doerschuk, and G. S. Kansas. 1995. The cytoplasmic domain of L-selectin interacts with cytoskeletal proteins via alpha-actinin: receptor positioning in microvilli does not require interaction with alphaactinin. J. Cell Biol. 129, 1155-1164.   DOI
11 Pritchard, C. A., L. Hayes, L. Wojnowski, A. Zimmer, R. M. Marais, and J. C. Norman. 2004. B-Raf acts via the ROCKII/LIMK/cofilin pathway to maintain actin stress fibers in fibroblasts. Mol. Cell Biol. 24, 5937-5952.   DOI
12 Sonja, M, Z, Jinyi, N. D. Susan, L. Stefan, F. K. Wilhelm, A. Siminovitch, and N. H. Henry. 2004. Lymphocyte microvilli are dynamic, actin-dependent structures that do not require Wiskott-Aldrich syndrome protein (WASp) for their morphology. Blood 104, 1396-1403.   DOI
13 Amano, T., K. Tanabe, T. Eto, S. Narumiya, and K. Mizuno. 2001. LIM-kinase 2 induces formation of stress fibres, focal adhesions and membrane blebs, dependent on its activation by Rho-associated kinase-catalysed phosphorylation at threonine-505. Biochem. J. 15, 149-159.
14 Aspenstrom, P., A. Fransson, and J. Saras. 2004. Rho GTPases have diverse effects on the organization of the actin filament system. Biochem. J. 377, 327-337.   DOI
15 Berlin, C., R. F. Bargatze, J. J. Campbell, U. H. von Andrian, M. C. Szabo, S. R. Hasslen, R. D. Nelson, E. L. Berg, S. L. Erlandsen, and E. C. Butcher. 1995. Alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 80, 413-422.   DOI
16 Cannon, J, L., P. D. Mody, K. M. Blaine, E. J. Chen, A. D. Nelson, L. J. Sayles, T. V. Moore, B. S. Clay, N. O. Dulin, R. A. Shilling, J. K. Burkhardt, and A. I. Sperling. 2011. CD43 interaction with ezrin-radixin-moesin (ERM) proteins regulates T-cell trafficking and CD43 phosphorylation. Mol. Biol. Cell 22, 954-963.   DOI
17 Brown, M. J., R. Nijhara, J. A. Hallam, M. Gignac, K. M. Yamada, S. L. Erlandsen, J. Delon, M. Kruhlak, and S. Shaw. 2003. Chemokine stimulation of human peripheral blood T lymph0ocytes induces rapid dephosphorylation of ERM proteins, which facilitates loss of microvilli and polarization. Blood 102, 3890-3899.   DOI
18 Bonilha, V. L., M. E. Rayborn, I. Saotome, A. I. McClatchey, and J. G. Hollyfield. 2006. Microvilli defects in retinas of ezrin knockout mice. Exp. Eye Res. 82, 720-729.   DOI
19 Campbell, J. J. and E. C. Butcher. 2000. Chemokines in tissuespecific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol. 12, 336-341.   DOI
20 Elizabeth, S. H., J. G. Timothy, G. H. Ernest, and N. H. Henry. 2010. Assembly of Filopodia by the Formin FRL2 (FMNL3). Cytoskeleton 67, 755-772.   DOI