• Title/Summary/Keyword: nano structure

Search Result 1,957, Processing Time 0.027 seconds

Effects of Hydrocolloids on the Quality of Protein and Transglutaminase Added Gluten-free Rice Bread (단백질과 트란스글루타미나제 첨가 글루텐 프리 쌀빵의 품질에 대한 친수콜로이드의 효과)

  • Hwang, Sun Ok;Kim, Ji Myoung;Shin, Malshick
    • Korean journal of food and cookery science
    • /
    • v.33 no.2
    • /
    • pp.198-208
    • /
    • 2017
  • Purpose: To improve the quality of basic gluten-free rice bread composed of white rice flour, salt, sugar, yeast, skim milk powder, olive oil, and water, the effects of transglutaminase (TGase), whey protein (WP), propylene glycol alginate (PGA), and hydroxypropylmethylcelluose (HPMC) were investigated. Methods: TGase, WP, PGA, and HPMC were added to rice flour cumulatively. The pasting properties of rice flour blends as well as volume, shape, color value, textural properties and sensory evaluation of basic rice bread (RB1) RB1+TGase (RB2), RB1+TGase+WP (RB3), RB1+TGase+WP+PGA (RB4), and RB1+TGase+WP+PGA+HPMC (RB5) were compared. Results: Consistency of rice batter increased upon addition of TGase, WP and PGA, and RB3 and RB4 had higher specific volumes than others. PGA improved volume, crumb air cell uniformity, and resilience but lowered elasticity and moistness of RB. HPMC increased, hardness, moistness and softness, and slightly reduced volume. Conclusion: Therefore, it is suggested that hydrocolloids, PGA and HPMC may be necessary to improve volume, crumb structure, textural properties and overall eating quality of gluten-free rice bread.

Thickness Control of Core Shell type Nano CoFe2O4@SiO2 Structure (두께 조절이 가능한 코어셸 형태의 SiO2 coated CoFe2O4 구조)

  • Yu, Ri;Kim, Yoo-Jin;Pee, Jae-Hwan;Kim, Kyung-Ja
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.230-234
    • /
    • 2010
  • Homogenous silica-coated $CoFe_2O_4$ samples with controlled silica thickness were synthesized by the reverse microemulsion method. First, 7 nm size cobalt ferrite nanoparticles were prepared by thermal decomposition methods. Hydrophobic cobalt ferrites were coated with controlled $SiO_2$ using polyoxyethylene(5)nonylphenylether (Igepal) as a surfactant, $NH_4OH$ and tetraethyl orthosilicate (TEOS). The well controlled thickness of the silica shell was found to depend on the reaction time and the amount of surfactant used during production. Thick shell was prepared by increasing reaction time and small amount of surfactant.

The evolution characteristics of incipient soot particles in ethylene/air inverse diffusion flame (에틸렌/공기 역확산 화염에서의 초기 매연 입자의 성장 특성)

  • Oh, Kwang-Chul;Lee, Uen-Do;Shin, Hyun-Dong;Lee, Eui-Ju
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.2
    • /
    • pp.38-44
    • /
    • 2004
  • The evolution of incipient soot particles has been examined by high resolution electron microscopy (HRTEM) and elemental analyzer in ethylene-air inverse diffusion flames. Laser Induced Incandescence(LII) and laser scattering methods were introduced for examining the soot volume fraction and morphological properties in combustion generated soot qualitatively. Soot particles, collected by thermophoretic sampling, were analyzed by using HRTEM to examine the nano structure of precursor particles. HRTEM micrographs apparently reveal a transformation of condensed phase of semitransparent tar-like material into precursor particles with relatively distinct boundary and crystalline which looks like regular layer structures. During this evolution histories, C/H analysis was also performed to estimate the chemical evolution of precursor particles. The changes of C/H ratio of soot particles with respect to residence time can be divided into two parts: one is a very slowly increasing regime where tar-like materials are transformed into precursor particles (inception process) the other is an increasing region with constant rate where surface growth affects the increase of C/H ratio dominantly (surface growth process). These results provide a clear picture of a transition to mature soot from precursor materials.

  • PDF

The Effect of pH and temperature on the Morphology of Aluminum Hydroxides formed by Hydrolysis Reaction (알루미늄의 수화 반응시 pH와 온도에 따른 형상 변화)

  • 오영화;이근회;박중학;이창규;김흥회;김도향
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.118-123
    • /
    • 2004
  • A formation of aluminum hydroxide by hydrolysis reaction in the water has been studied by using nano aluminum powder fabricated by pulsed wire evaporation(PWE) method. The hydroxide type and morphology depending on temperature and pH were examined by structural analysis. The Boehmite($Al_2O_3$.$H_2O$ or AIO(OH)) was predominantly formed in high temperature region over 4$0^{\circ}C$, while the Bayerite($Al_2O_3$.$H_2O$ or $Al(OH)_3$) below $30^{\circ}C$ of hydrolysis temperature. The Boehmite formation was preferred to the Bayerite in acidic solution in the same hydrolysis temperature. The slowly formed Bayerite phase showed facet crystalline structure, while the fast formed Boehmite was fine fiber with a large aspect ratio of several nm in diameter and several hundred nm in length, and with much larger specific surface area(SSA) than that of Bayerite. The highest SSA was about $420m^2$/g.

Fabrication and Performance Investigation of Surface Temperature Sensor Using Fluorescent Nanoporous Thin Film I (형광 나노 포러스 박막을 이용한 표면 온도 센서의 제작 및 성능 연구 I)

  • Kim, Hyun Jung;Yoo, Jaisuk;Park, Jinil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.668-673
    • /
    • 2013
  • In this study, specimens with nano-sized porous thin films were manufactured by injecting fluorescence solution into the pores. We intended to find out the difference of the fluorescence intensity in each region of the specimen through an experimental apparatus that makes a temperature field. Before conducting experiments, the optimized manufacturing conditions were determined by analysis of all parameters that influence the emission intensity, and the experiments were carried out with the specimens produced in the optimized conditions. Then, the calibration curves of the fluorescence intensity versus temperature were performed by taking the intensity distributions from the specimen in various temperature fields. The surfaces of specimens were coated with Rhodamine-B (Rh-B) fluorescent dye and measured based on the fluorescence intensity. Silica (SiO2) nanoporous structure with 1-um thickness was constructed on a cover glass, and fluorescence dye was absorbed into these porous thin films.

Fabrication and Performance Investigation of Surface Temperature Sensor Using Fluorescent Nanoporous Thin Film II (형광 나노 포러스 박막을 이용한 표면 온도 센서의 제작 및 성능 연구 II)

  • Kim, Hyun Jung;Yoo, Jaisuk;Park, Jinil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.674-678
    • /
    • 2013
  • We present a non-invasive technique to the measure temperature distribution in nano-sized porous thin films by means of the two-color laser-induced fluorescence (2-LIF) of rhodamine B. The fluorescence induced by the green line of a mercury lamp with the makeup of optical filters was measured on two separate color bands. They can be selected for their strong difference in the temperature sensitivity of the fluorescence quantum yield. This technique allows for absolute temperature measurements by determining the relative intensities on two adequate spectral bands of the same dye. To measure temperature fields, Silica (SiO2) nanoporous structure with 1-um thickness was constructed on a cover glass, and fluorescent dye was absorbed into these porous thin films. The calibration curves of the fluorescence intensity versus temperature were measured in a temperature range of $10-60^{\circ}C$, and visualization and measurement of the temperature field were performed by taking the intensity distributions from the specimen for the temperature field.

Carbon nanotubes synthesis using diffusion and premixed flame methods: a review

  • Mittal, Garima;Dhand, Vivek;Rhee, Kyong Yop;Kim, Hyeon-Ju;Jung, Dong Ho
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • In recent years, flame synthesis has absorbed a great deal of attention as a combustion method for the production of metal oxide nanoparticles, carbon nanotubes, and other related carbon nanostructures, over the existing conventional methods. Flame synthesis is an energy-efficient, scalable, cost-effective, rapid and continuous process, where flame provides the necessary chemical species for the nucleation of carbon structures (feed stock or precursor) and the energy for the production of carbon nanostructures. The production yield can be optimized by altering various parameters such as fuel profile, equivalence ratio, catalyst chemistry and structure, burner configuration and residence time. In the present report, diffusion and premixed flame synthesis methods are reviewed to develop a better understanding of factors affecting the morphology, positioning, purity, uniformity and scalability for the development of carbon nanotubes along with their correlated carbonaceous derivative nanostructures.

A Study on the Magnetoelectric Effect in Lanthanum Modified BiFeO3−PbTiO3 Ceramics (Lanthanum이 첨가된BiFeO3−PbTiO3 세라믹스의 전자효과에 대한 연구)

  • Lee, Eun-Gu;Kim, Sun-Jae;Lee, Jae-Gab
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.6 s.301
    • /
    • pp.308-312
    • /
    • 2007
  • Ferroelectric, magnetic, and magnetoelectric effects for lanthanum modified $BiFeO_3-PbTiO_3$ ceramics have been investigated. The data show that magnetoelectric polarization coefficient, ${\alpha}_p$ is due to a linear coupling between polarization and magnetization, and that ${\alpha}_p$ is independent of dc magnetic bias and ac magnetic field. The values of ${\alpha}_p$ and magnetic induced susceptibility for lanthanum modified $BiFeO_3-PbTiO_3$ ceramics are much larger than those of single $BiFeO_3$ crystal. We believe that the magnetoelectric effect is significantly enhanced by breaking of the cycloidal spin state of a long-period spiral spin structure due to randomly distributed charged imperfections.

Low Voltage and Rapid Response Time Electrophoretic Display

  • Lee, Y.E.;Cho, Y.T.;Choi, Y.G.;Park, S.C.;Lee, M.H.;Park, Y.M.;Kim, D.Y.;Kim, C.H.;An, C.H.;Kim, H.S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.360-363
    • /
    • 2009
  • In this paper, we describe new approach of ink particle fabrication method for electrophoretic display(EPD) with low voltage and rapid response time. Nano-size ink particles which fabricated using non-aqueous base modified emulsion process and micron-scale particles by non-solvent particle fabrication process are discussed. Finally, specially designed particles and panel structure fabricated considering the interactions between particle/particle, particle/media or particle/electrode dramatically reduce the driving voltages to ${\pm}$ 10V and improve the response time of less than 100msec and white reflectance of 58% for EPD using dielectric fluid as a medium. In case of EPD adapting micron-sized electrophoretic particles and a medium of air, the saturation voltage could be reduced to ${\pm}$ 40V and having white reflectance of 45% without scarification of electrophoretic mobility of the particles.

  • PDF

Low temperature wet-chemical synthesis of spherical hydroxyapatite nanoparticles and their in situ cytotoxicity study

  • Mondal, Sudip;Dey, Apurba;Pal, Umapada
    • Advances in nano research
    • /
    • v.4 no.4
    • /
    • pp.295-307
    • /
    • 2016
  • The present research work reports a low temperature ($40^{\circ}C$) chemical precipitation technique for synthesizing hydroxyapatite (HAp) nanoparticles of spherical morphology through a simple reaction of calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate at pH 11. The crystallinity of the single-phase nanoparticles could be improved by calcinating at $600^{\circ}C$ in air. Thermogravimetric and differential thermal analysis (TG-DTA) revealed the synthesized HAp is stable up to $1200^{\circ}C$. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies confirmed the formation of spherical nanoparticles with average size of $23.15{\pm}2.56nm$ and Ca/P ratio of 1.70. Brunauer-Emmett-Teller (BET) isotherm of the nanoparticles revealed their porous structure with average pore size of about 24.47 nm and average surface area of $78.4m2g^{-1}$. Fourier transform infrared spectroscopy (FTIR) was used to confirm the formation of P-O, OH, C-O chemical bonds. Cytotoxicity and MTT assay on MG63 osteogenic cell lines revealed nontoxic bioactive nature of the synthesized HAp nanoparticles.