Browse > Article
http://dx.doi.org/10.12989/anr.2016.4.4.295

Low temperature wet-chemical synthesis of spherical hydroxyapatite nanoparticles and their in situ cytotoxicity study  

Mondal, Sudip (Instituto de Fisica, Universidad Autonoma de Puebla)
Dey, Apurba (Department of Biotechnology, National Institute of Technology Durgapur)
Pal, Umapada (Instituto de Fisica, Universidad Autonoma de Puebla)
Publication Information
Advances in nano research / v.4, no.4, 2016 , pp. 295-307 More about this Journal
Abstract
The present research work reports a low temperature ($40^{\circ}C$) chemical precipitation technique for synthesizing hydroxyapatite (HAp) nanoparticles of spherical morphology through a simple reaction of calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate at pH 11. The crystallinity of the single-phase nanoparticles could be improved by calcinating at $600^{\circ}C$ in air. Thermogravimetric and differential thermal analysis (TG-DTA) revealed the synthesized HAp is stable up to $1200^{\circ}C$. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies confirmed the formation of spherical nanoparticles with average size of $23.15{\pm}2.56nm$ and Ca/P ratio of 1.70. Brunauer-Emmett-Teller (BET) isotherm of the nanoparticles revealed their porous structure with average pore size of about 24.47 nm and average surface area of $78.4m2g^{-1}$. Fourier transform infrared spectroscopy (FTIR) was used to confirm the formation of P-O, OH, C-O chemical bonds. Cytotoxicity and MTT assay on MG63 osteogenic cell lines revealed nontoxic bioactive nature of the synthesized HAp nanoparticles.
Keywords
hydroxyapatite; nanomaterials; wet chemical precipitation; biomaterials;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Varma, H.K., Kalkura, S.N. and Sivakumar, R. (1998), "Polymeric precursor route for the preparation of calcium phosphate compounds", Ceram. Int., 24(6), 467-470.   DOI
2 Xu, J.L., Khor, K.A., Dong, Z.L., Gu, Y.W., Kumar, R. and Cheang, P. (2004), "Preparation and characterization of nano-sized hydroxyapatite powders produced in a radio frequency (RF) thermal plasma", Mater. Sci. Eng. A., 374, 101-108.   DOI
3 Mobasherpour, I., Soulati Heshajin, M., Kazemzadeh, A. and Zakeri M. (2007), "Synthesis of nanocrystalline hydroxyapatite by using precipitation method", J. Alloy. Compd., 430, 330-333.   DOI
4 Mondal, S., Bardhan. R., Mondal, B., Dey, A., Mukhopadhyay, S.S., Roy, S., Guha, R. and Roy, K. (2012), "Synthesis, characterization and in vitro cytotoxicity assessment of hydroxyapatite from different bioresources for tissue engineering application", Bull. Mater. Sci., 35(4), 683-691.   DOI
5 Mondal, S., Mahata, S., Kundu, S. and Mondal, B. (2010), "Processing of natural resourced hydroxyapatite ceramics from fish scale", Adv. Appl. Ceram., 109(4), 234-239.   DOI
6 Mondal, S., Mondal, A., Mandal, N., Mondal, B., Mukhopadhyay, S.S., Dey, A. and Singh, S. (2014), "Physico-chemical characterization and biological response of Labeo rohita derived hydroxyapatite scaffold", Bioprocess. Biosyst. Eng., 37, 1233-1240.   DOI
7 Morales, J.G., Burgues, J.J., Boix, T., Fraile, J. and Clemente R.R. (2001), "Precipitation of stoichiometric hydroxyapatite by a continuous method", Cryst. Res. Technol., 36(1), 15-26.   DOI
8 Mondal, S., Mondal, B., Dey, A. and Mukhopadhyay, S.S. (2012), "Studies on processing and characterization of hydroxyapatite biomaterials from different bio wastes", J. Miner. Mat. Charac. Eng., 11(1), 55-67.
9 Mondal, S., Pal, U. and Dey, A. (2016), "Natural origin hydroxyapatite scaffold as potential bone tissue engineering substitute", Ceram. Int., dx.doi.org/10.1016/j.ceramint.2016.08.165.   DOI
10 Monma, H. and Takahashi, T. (1987), "Preparation and thermal changes of carbonate containing apatite", Gypsum and Lime., 210, 287-291.
11 Nagai, M. and Nishino, T. (1988), "A new type of $CO_2$ gas sensor comprising porous hydroxyapatite ceramics", Sensor. Actuat., 15(2), 145-151.   DOI
12 Nasiri-Tabrizi, B., Honarmandi, P., Ebrahimi-Kahrizsangi, R. and Honarmandi, P. (2009), "Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method", Mater. Letts., 63, 543-546.   DOI
13 Panda, R.N., Ming-Fa, H., Chung, R.J. and Chin, T.S. (2001), "X-Ray diffractometry and X-Ray photoelectron spectroscopy investigations of nanocrytalline hydroxyapatite synthesized by a hydroxide gel technique", Jpn. J. Appl. Phys., 40, 5030-5035.   DOI
14 Raynaud, S., Champion, E., Assollant, D.B. and Thomas, P. (2002), "Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterisation and thermal stability of powder", Biomater., 23(4), 1065-1072.   DOI
15 Rivera, E.M., Araiza, M., Brostow, W., Castano, V.M., Diaz-Estrada, J.R., Hernandez, R. and Rodriguez., J.R. (1999), "Synthesis of hydroxyapatite from eggshells", Mater. Lett., 41(3), 128-134.   DOI
16 Deram, V., Minichiello, R., Maguer, A. Le., Pawlowski, L. and Murano, D. (2003), "Microstructural characterizations of plasma sprayed hydroxyapatite coatings", Surf. Coat. Technol., 166(2003), 153-159.   DOI
17 Sarig, S. and Kahana, E. (2002), "Rapid formation of nanocrystalline apatite", J. Crystal Growth., 237, 55-59.
18 Adhikary, K., Takahashi, M. and Kikkawa, S. (2004), "Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method", Mater. Res. Bull., 39, 25-32.   DOI
19 Biamino, S. and Badini, C. (2004), "Combustion synthesis of lanthanum chromite starting from water solutions: Investigation of process mechanism by DTA-TGA-MS", J. Eur. Ceram. Soc., 24, 3021-3034.   DOI
20 Fu, Y.C., Ho, M.L., Wu, S.C., Hsieh, H.S. and Wang, C.K. (2008), "Porous bioceramic bead prepared by calcium phosphate with sodium alginate gel and PE powder", Mater. Sci. Eng. C., 28, 1149-1158.   DOI
21 Furuzono, T., Sonoda, K. and Tanaka, J. (2001), "A hydroxyapatite coating covalently linked onto a silicone implant material", J. Biomed. Mater. Res., 56(1), 9-16.   DOI
22 Gross, K.A., Berndt, C.C., Stephens, P. and Dinnebier, R. (1998), "Oxyapatite in hydroxyapatite coatings", J. Mater. Sci., 33(15), 3985-3991.   DOI
23 Han, Y., Wang, X. and Cheni, X. (2004), "Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method", Mater. Res. Bull., 39(1), 25-32.   DOI
24 Jillavenkatesa, A., Hoelzer, D.T. and Condrate, Sr. R.A. (1999), "An electron microscopy study of the formation of hydroxyapatite through sol-gel processing", J. Mater. Sci., 34(19), 4821-4830.   DOI
25 Kehoe, S. (2008), "Optimisation of hydroxyapatite (HAp) for orthoapedic application via the chemical precipitation technique", PhD Thesis, Dublin City University.
26 Kuriakose, T.A., Kalkura, S.N., Palanichamy, M., Arivuoli, D., Dierks, K., Bocelli, G. and Betzel, C. (2004), "Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol-gel technique at low temperature", J. Cryst. Growth, 263, 517-523.   DOI
27 Kehoe, S. (2008), Calcium Phosphates for Medical Applications, Eds. L. Looney & J. Stokes, (C) Dublin City University, ISBN 1-87232-776-1, ISSN 1649-8232.
28 Khal, E.M. and Batis, N.H. (2015), "Effects of temperature on the preparation and characteristics of hydroxyapatite and its adsorptive properties toward lead", New J. Chem., 39, 3597-3607.   DOI
29 Komath, M., Varma, H.K. and Sivakumar, R. (2000), "On the development of an apatitic calcium phosphate bone cement", Bul. Mater. Sci., 23(2), 135-140.   DOI
30 Liu, D.M., Troczynski, T. and Tseng, W.J. (2001), "Water-based sol-gel synthesis of hydroxyapatite:process development", Biomater., 22(13), 1721-1730.   DOI
31 Liu, D.M., Yang, Q., Troczynski, T. and Tseng, W.J. (2002), "Structural evolution of sol-gel-derived hydroxyapatite", Biomater., 23(7), 1679-1687.   DOI
32 Lowell, S. (1979), Introduction to Powder Surface Area, John Wiley and Sons, Toronto.
33 Shih, W.J., Chen, Y.F., Wang, M.C. and Hon, M.H. (2004), "Crystal growth and morphology of the nanosized hydroxyapatite powders synthesized from $CaHPO_4{\cdot}_2H_2O$ and $CaCO_3$ by hydrolysis method", J. Cryst. Growth, 270, 211-218.   DOI
34 Tampieri, A., Celotti, G., Szontagh, F. and Landi, E. (1997), "Sintering and characterization of HA and TCP bioceramics with control of their strength and phase purity", J. Mater. Sci. Mater. Med., 8(1), 29-37.   DOI
35 Shojai, M.S., Khorasani, M.T., Khoshdargi, E.D. and Jamshidi. A. (2013), "Synthesis methods for nanosized hydroxyapatite with diverse structures", Acta Biomater., 9(8), 7591-7621.   DOI
36 Song, T., Wen, S. and Li, M. (2002), "The investigation on preparation and physicochemical process of nanosized hydroxyapatite powder", Mat. Res. Soc. Symp. Proc., 724, 135-140.
37 Sridhar, T.M., Mudali, U.K. and, Subbaiyan, M. (2003), "Sintering atmosphere and temperature effects on hydroxyapatite coated type 316L stainless steel", Corros. Sci., 45(10), 2337-2359.   DOI
38 Stockert, J.C., Castro, A.B., Canete, M., Horobin, R.W. and Villanueva, A. (2012), "MTT assay for cell viability: Intracellular localization of the formazan product is in lipid droplets", Acta Histochemica., 114(8), 785-796.   DOI
39 Tampieri, A., Celotti, G., Sprio, S. and Mingazzini, C. (2000), "Characteristics of synthetic hydroxyapatites and attempts to improve their thermal stability", Mater. Chem. Phys., 64(1), 54-61.   DOI
40 Tanaka, H., Chikazawa, M., Kandori, K. and Ishikawa, T. (2000), "Influence of thermal treatment on the structure of calcium hydroxyapatite", Phys. Chem. Chem. Phys., 2, 2647-2650.   DOI
41 Tsui, Y.C., Doyle, C. and Clyne, T.W. (1998), "Plasma sprayed hydroxyapatite coatings on titanium substrates Part 1: Mechanical properties and residual stress levels", Biomater., 19(22), 2015-2029.   DOI
42 Uskokovic, V. and Wu, M.V. (2016), "Calcium Phosphate as a Key Material for Socially Responsible Tissue Engineering", Mater., 9(434), 1-27.
43 Vaidhynathan, B. and Rao, K.J., (1996), "Rapid microwave assisted synthesis of hydroxyapatite", Bull. Mater. Sci., 19(6) 1163-1165.   DOI