• Title/Summary/Keyword: nano structure

Search Result 1,957, Processing Time 0.03 seconds

Accuracy improvement in motion tracking of tennis balls using nano-sensors technology

  • Shuning Yan;Chaozong Xiang;Li Guo
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.409-419
    • /
    • 2023
  • Tracking the motion of tennis balls is a challenging task in using cameras around the tennis court. The most important instance of the tennis trajectory is the time of impact and touch the court which in some cases could not be detected precisely. In the present study, we aim to present a novel design of tennis balls equipped with nano-sensors to detect the touch of the ball to the court. In the impact instance, tennis ball receives significant acceleration and change in the linear momentum. This large acceleration could deform a small-beam structure with piezoelectric layer to produce voltage. The voltage could further be utilized to produce infrared waves which could be easily detected by infrared detection sensors installed on the same video cameras or separately near the tennis court. Therefore, the exact time of the impact could be achieved with higher accuracy than image analyzing method. A detailed dynamical property of such sensors is discussed using nonlinear beam equations. The results show that within the acceleration range of tennis ball during an impact, the piezoelectric patches of the nano-sensors in the tennis ball could produce enough voltages to propagate infrared waves to be detected by infrared detectors.

Granular Thin Film of Titanium Dioxide for Hydrogen Gas Sensor (입상의 이산화티타늄 박막을 이용한 수소센서)

  • Song, Hye-Jin;Oh, Dong-Hoon;Jung, Jin-Yeun;Nguyen, Duc Hoa;Cho, You-Suk;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.19 no.6
    • /
    • pp.325-329
    • /
    • 2009
  • Titanium dioxide thin films were fabricated as hydrogen sensors and its sensing properties were tested. The titanium was deposited on a $SiO_2$/Si substrate by the DC magnetron sputtering method and was oxidized at an optimized temperature of $850^{\circ}C$ in air. The titanium film originally had smooth surface morphology, but the film agglomerated to nano-size grains when the temperature reached oxidation temperature where it formed titanium oxide with a rutile structure. The oxide thin film formed by grains of tens of nanometers size also showed many short cracks and voids between the grains. The response to 1% hydrogen gas was ${\sim}2{\times}10^6$ at the optimum sensing temperature of $200^{\circ}C$, and ${\sim}10^3$ at room temperature. This extremely high sensitivity of the thin film to hydrogen was due partly to the porous structure of the nano-sized sensing particles. Other sensor properties were also examined.

Characteristics of Indium Tin Oxide Films Grown on PET Substrate Grown by Using Roll-to-Roll (R2R) Sputtering System (롤투롤 스퍼터 시스템을 이용하여 PET 기판위에 성막 시킨 ITO 박막의 특성 연구)

  • Cho, Sung-Woo;Choi, Kwang-Hyuk;Bae, Jung-Hyeok;Moon, Jong-Min;Jeong, Jin-A;Jeong, Soon-Wook;Park, No-Jin;Kim, Han-Ki
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.32-37
    • /
    • 2008
  • The electrical, optical, structural and surface properties of an indium tin oxide (ITO) film grown on a flexible PET substrate using a specially designed roll-to-roll (R2R) sputtering system as a function of the DC power, $Ar/O_2$ flow ratio, and rolling speed is reported. It was observed that both the electrical and optical properties of the ITO film on the PET substrate were critically dependent on the $Ar/O_2$ flow ratio. In addition, x-ray diffraction examination results showed that the structure of the ITO film on the PET substrate was an amorphous structure regardless of the DC power and the $Ar/O_2$ flow ratio due to a low substrate temperature, which was maintained constant by a main cooling drum. Under optimized conditions, ITO film with resistivity of $6.44{\times}10^{-4}{\Omega}-cm$ and transparency of 86% were obtained, even when prepared at room temperature. Furthermore, bending test results exhibited that R2R-grown ITO film had good flexibility which would be applicable to flexible displays and solar cells.

Transmittance Improvement with Reversed Fishbone-Shape Electrode in Vertical Alignment Liquid Crystal Display

  • Lim, Young Jin;Kim, Hyo Joong;Kim, Min Su;Kim, Gi Heon;Kim, Yong Hae;Lee, Gi-Dong;Lee, Seung Hee
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.794-798
    • /
    • 2016
  • A polymer-stabilized vertical alignment (PS-VA) mode with fishbone-shaped pixel electrode structure is mainly used in large-sized liquid crystal displays (LCDs) owing to its advantages such as wide viewing angle, good transmittance and fast response time. One drawback of this mode is a main bone electrode, which crosses in the center of a pixel. It causes the transmittance to decrease badly because LCs cannot be reoriented in this region, and thus, it is particularly unfavorable in an ultra-high-definition LCD. Here, we propose an innovative structure with the main bone electrode relocated to the edge area in a pixel, and investigate how this reverse directed fishbone-shaped pixel electrode structure affects electro-optic characteristics. The proposed structure shows enhanced electro-optic performance, such as the higher transmittance and the faster response time than the conventional VA mode with fishbone-shaped pixel electrode structure.

Preparation and Characterizations of C60/Polystyrene Composite Particle Containing Pristine C60 Clusters

  • Kim, Jung-Woon;Kim, Kun-Ji;Park, Soo-Yeon;Jeong, Kwang-Un;Lee, Myong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2966-2970
    • /
    • 2012
  • Fullerene/polystyrene ($C_{60}$/PS) nano particle was prepared by using emulsion polymerization. Styrene and fullerene were emulsified in aqueous media in the presence of poly(N-vinyl pyridine) as an emulsion stabilizer, and polymerization was initiated by water soluble radical initiator, potassium persulfate. The obtained nano particles have an average diameter in the range of 400-500 nm. The fullerene contents in the nano particle can be controlled up to 15 wt % by varying the feed ratio, which was confirmed by themogravimetric analysis (TGA) and elemental analysis (EA). The structure and morphologies of the $C_{60}$/PS nano particles were examined by various analytical techniques such as dynamic light scattering (DLS), scanning electron microscope (SEM), transmission electron microscope (TEM), electron diffraction (ED) pattern, X-ray powder diffraction (XRD), and UV spectroscopy. Unlike conventional $C_{60}$/PS particles initiated by organic free radical initiators, in which the fullerene is copolymerized forming a covalent bond with styrene monomer, the prepared $C_{60}$/PS nano particles contain pristine fullerene as secondary particles homogeneously distributed in the polystyrene matrix.

Fabrication and Electrical Characteristics of ZnO Nano-powder Varistors (ZnO 나노파우더 바리스터의 제작과 전기적 특성)

  • Yoo, In-Sung;Jeong, Jong-Yub;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1117-1123
    • /
    • 2005
  • In this study, our varistors based on M. Matsuoka's composition were fabricated with ZnO nano-powder whose sizes were 50 nm and 100 nm. Before fabrication of ZnO nano-powder varistors, structure and Phase were analyzed by FE-SEM and XRD with size of ZnO nano-powders to obtain manufacturing information to fabricate the first ZnO varistors using by nano-powders. As a results of these analyses, calcination and sintering temperatures were respectively designed at $600^{\circ}C\;and\;1050^{\circ}C$. ZnO nano-powder varistors were analyzed by SEM and XRD to measure the changes of microstructures and phase after sintered by out process conditions. Also, electrical properties of ZnO nano-powder varistors were obtained by capacitance-voltage, frequency-teal impedance, and current-voltage corves. Our ZnO nano-powder varistors had about 2.5 times of electric field at varistor voltage as compared with normal ZnO varistors fabricated with micro-powder. Also, leakage current and non-liner coefficient respectively had $2.0{\times}10^{-6}A/cm^{-2}$ and 41 for ZnO nano-powder varistors with 50 nm.

Controlling the Growth of Few-layer Graphene Dependent on Composition Ratio of Cu/Ni Homogeneous Solid Solution

  • Lim, Yeongjin;Choi, Hyonkwang;Gong, Jaeseok;Park, Yunjae;Jeon, Minhyon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.273.1-273.1
    • /
    • 2014
  • Graphene, a two dimensional plane structure of $sp^2$ bonding, has been promised for a new material in many scientific fields such as physics, chemistry, and so on due to the unique properties. Chemical vapor deposition (CVD) method using transitional metals as a catalyst can synthesize large scale graphene with high quality and transfer on other substrates. However, it is difficult to control the number of graphene layers. Therefore, it is important to manipulate the number of graphene layers. In this work, homogeneous solid solution of Cu and Ni was used to control the number of graphene layers. Each films with different thickness ratio of Cu and Ni were deposited on $SiO_2/Si$ substrate. After annealing, it was confirmed that the thickness ratio accords with the composition ratio by X-ray diffraction (XRD). The synthesized graphene from CVD was analyzed via raman spectroscopy, UV-vis spectroscopy, and 4-point probe to evaluate the properties. Therefore, the number of graphene layers at the same growth condition was controlled, and the correlation between mole fraction of Ni and the number of graphene layers was investigated.

  • PDF

Study on Fabrication of Highly Ordered Nano Master by Using Anodic Aluminum Oxidation (AAO를 이용한 나노 마스터 제작에 관한 연구)

  • Kwon, J.T.;Shin, H.G.;Seo, Y.H.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.162-165
    • /
    • 2007
  • AAO(Anodic Aluminum Oxidation) method has been known that it is practically useful for the fabrication of nano-structures and makes it possible to fabricate the highly ordered nano masters on large surface and even on the 2.5 or 3D surface at low cost comparing to the expensive e-beam lithography or the conventional silicon processing. In this study, by using the multi-step anodizing and etching processes, highly ordered nano patterned master with concave shapes was fabricated. By varying the processing parameters, such as initial matter and chemical conditions; electrical and thermal conditions; time scheduling; and so on, the size and the pitch of the nano pattern can be controlled. Consequently, various alumina/aluminum nano structures can be easily available in any size and shape by optimized anodic oxidation in various aqueous acids. In order to replicate nano patterned master, the resulting good filled uniform nano molded structure through electro-forming process shows the validity of the fabricated nano pattern masters.

  • PDF

Post-Annealing Effects on Properties of ZnO Nanorods Grown on Au Seed Layers

  • Cho, Min-Young;Kim, Min-Su;Choi, Hyun-Young;Yim, Kwang-Gug;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.880-884
    • /
    • 2011
  • ZnO nanorods were grown by hydrothermal method. Two kinds of seed layers, Au film and island seed layers were prepared to investigate the effect of seed layer on ZnO nanorods. The ZnO nanorod on Au island seed layer has more unifom diameter and higher density compared to that of ZnO nanorod on Au film seed layer. The ZnO nanorods on Au island seed layer were annealed at various temperatures ranging from 300 to $850^{\circ}C$. The pinholes at the surface of the ZnO nanorods is formed as the annealing temperature is increased. It is noted that the pyramid structure on the surface of ZnO nanorod is observed at $850^{\circ}C$. The intensity of ZnO (002) diffraction peak in X-ray diffraction pattern and intensity of near band edge emission (NBE) peak in photoluminescence (PL) are increased as the ZnO nanorods were annealed at the temperature of $300^{\circ}C$.

The effect of Sodium Concentrations on the Formation of Nanotubes Obtained from $TiO_2$

  • Qamar, M.;Lee, N.H.;Yoon, C.R.;Oh, H.J.;Kim, S.J.;Hwang, J.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.123-125
    • /
    • 2006
  • The $TiO_2$ sol was prepared hydrothermally in an autoclave from aqueous $TiOCl_2$ solutions as a starting precursor. Hollow fibers were obtained when the sol-gel-derived $TiO_2$ sol was treated chemically with a NaOH solution and subsequently heated in the autoclave under various conditions. A systematic analysis of the influence of different NaOH concentrations on the formation of nanotubes was carried out. The details of the nanotubular structure were investigated by using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). From the TEM images, the outer and the inner diameters of the tubes were measured to be about 8 and 4 nm, respectively, the lengths were measured to be several hundreds of nanometers.

  • PDF