References
- Zhang, Y.; Du, G.; Liu, D.; Wang, X.; Ma, Y.; Wang, J.; Yin, J.; Yang, X.; Hou, X.; Yang, S. J. Crystal Growth 2002, 243, 439. https://doi.org/10.1016/S0022-0248(02)01569-5
- Golego, N.; Studenikin. S. A.; Cocivera, M. J. Electochem. Soc. 2000, 147, 1592. https://doi.org/10.1149/1.1393400
- Rau, U.; Schmidt, M. Thin Solid Films 2001, 387, 141. https://doi.org/10.1016/S0040-6090(00)01737-5
- Liu, Y.; Gorla, C. R.; Liang, S. J. Electron. Mater. 2000, 29, 60.
- Soki, T.; Hatanaka, Y.; Look, D. C. Appl. Phys. Lett. 2000, 76, 3257. https://doi.org/10.1063/1.126599
- Kong, Y. C.; Yu, D. P.; Zhang, B.; Fang, W.; Feng, S. Q. Appl. Phys. Lett. 2001, 78, 407. https://doi.org/10.1063/1.1342050
- Maejima, K.; Ueda, M.; Fujita, S. Z.; Fujita, S. G. Jpn. J. Appl. Phys. 2003, 42, 2600. https://doi.org/10.1143/JJAP.42.2600
- Wang, Z. L.; Kong, X. Y.; Ding, Y.; Gao, P.; Hughes, W. L.; Yang, R. Adv. Funct. Mater. 2004, 14, 943. https://doi.org/10.1002/adfm.200400180
- Li, Y.; Ding, Y.; Wang, Z. Adv. Mater. 1999, 11, 844. https://doi.org/10.1002/(SICI)1521-4095(199907)11:10<844::AID-ADMA844>3.0.CO;2-N
- Look, D. C. Mater. Sci. Eng. B 2001, 80, 383. https://doi.org/10.1016/S0921-5107(00)00604-8
- Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkoc, H. A. J. Appl. Phys. 2005, 98, 041301. https://doi.org/10.1063/1.1992666
- Tian, Z. R.; Voigt, J. A.; Liu, J.; Mckenzie, B.; Mcdermott, M. J.; Rodriguez, M. A.; Konishi, H.; Xu, H. Nat. Mater. 2003, 2, 821. https://doi.org/10.1038/nmat1014
- Baruah, S.; Dutta, J. Sci. Technol. Adv. Mater. 2009, 10, 013001. https://doi.org/10.1088/1468-6996/10/1/013001
- Lee, Y.; Zhange, Y.; Ng, S. L. G.; Kartawidjaja, F. C.; Wang, J. J. Am. Ceram. Soc. 2009, 92, 1940. https://doi.org/10.1111/j.1551-2916.2009.03148.x
- Sun, S. H.; Meng, G. W.; Zhang, M. G.; Hao, Y. F.; Zhang, X. R.; Zhang, L. D. J. Phys. Chem. B 2003, 107, 13029. https://doi.org/10.1021/jp035763y
- Massalski, T. B. Binary Alloy Phase Diagrams; OH: ASM International: 1990; p 428.
- Lee, Y.-J; Sounart, T. L.; Scrymgeour, D. A.; Voigt, J. A.; Hsu, J. W. P. J. Cryst. Growth 2007, 304, 80. https://doi.org/10.1016/j.jcrysgro.2007.02.011
- Romero, R.; Leinen, D.; Dalchiele, E. A.; Ramos-Barrado, J. R.; Martin, F. Thin Solid Films 2006, 515, 1942. https://doi.org/10.1016/j.tsf.2006.07.152
- Kim, S. S.; Lee, B. T. Thin Solid Films 2004, 446, 307. https://doi.org/10.1016/j.tsf.2003.09.057
- Jeon, S. M.; Kim, M. S.; Cho, M. Y.; Choi, H. Y.; Yim, K. G.; Kim, G. S.; Kim, H. G.; Leem, Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Lee, J. I.; J.-Y. J. Korean Phys. Soc. 2010, 57, 1477. https://doi.org/10.3938/jkps.57.1477
- Lee, S. H.; Lee, H. J.; Goto, H.; Cho, M. W.; Yao, T. Phy. Stat. Sol.(c) 2007, 4, 1747. https://doi.org/10.1002/pssc.200674279
- Wang, X.; Tian, Z.; Yu, T.; Tian, H.; Zhang, J.; Yuan, S.; Zhang, X.; Li, Z.; Zou, Z. Nanotech. 2010, 21, 065703. https://doi.org/10.1088/0957-4484/21/6/065703
- Zhou, H.; Alves, H.; Hofmann, D. M.; Kriegseis, W.; Meyer, B. K.; Kaczmarczyk, G.; Hoffmann, A. Appl. Phys. Lett. 2002, 80, 210. https://doi.org/10.1063/1.1432763
- Kreye, M.; Postels, B.; Wehmann, H.-H.; Fuhrmann, D.; Hangleiter, A.; Waag, A. Phys. Stat. Sol. (c) 2006, 3, 992. https://doi.org/10.1002/pssc.200564649
- Xie, R.; Sekiguchi, T.; Ishigaki, T.; Ohashi, N.; Li, D.; Yang, D.; Liu, B.; Bando, Y. Appl. Phys. Lett. 2006, 88, 134103. https://doi.org/10.1063/1.2189200
Cited by
- Effect of Different Seed Solutions on the Morphology and Electrooptical Properties of ZnO Nanorods vol.2012, pp.1687-4129, 2012, https://doi.org/10.1155/2012/452407
- O Seed Layers with Various Cd Mole Fractions vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.189
- Fabrication and photoluminescence studies of porous ZnO nanorods vol.61, pp.1, 2012, https://doi.org/10.3938/jkps.61.102
- Effects of annealing atmosphere and temperature on properties of ZnO thin films on porous silicon grown by plasma-assisted molecular beam epitaxy vol.8, pp.2, 2012, https://doi.org/10.1007/s13391-012-1089-z
- Effects of position, thickness, and annealing temperature of Ag buffer layer on the shape of ZnO nanocrystals grown by a simple hydrothermal process vol.28, pp.24, 2013, https://doi.org/10.1557/jmr.2013.354
- Effects of Doping with Al, Ga, and In on Structural and Optical Properties of ZnO Nanorods Grown by Hydrothermal Method vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1205
- Effects of post-heated ZnO seed layers on structural and optical properties of ZnO nanostructures grown by hydrothermal method vol.9, pp.3, 2013, https://doi.org/10.1007/s13391-013-2190-7
- Seed-layer-free hydrothermal growth of zinc oxide nanorods on porous silicon vol.10, pp.3, 2014, https://doi.org/10.1007/s13391-013-3139-6
- Low-Frequency Noise Spectra of Laterally Bridged ZnO Microrod-Based Photodetectors vol.20, pp.6, 2014, https://doi.org/10.1109/JSTQE.2014.2325213
- Effect of annealing and hydrogen plasma treatment on the luminescence and persistent photoconductivity of polycrystalline ZnO films vol.121, pp.24, 2017, https://doi.org/10.1063/1.4989826
- Analysis of structural and UV photodetecting properties of ZnO nanorod arrays grown on rotating substrate vol.85, pp.2, 2018, https://doi.org/10.1007/s10971-017-4540-7
- Effect of Heat and Plasma Treatments on the Photoluminescence of Zinc-Oxide Films vol.52, pp.2, 2018, https://doi.org/10.1134/S1063782618020021
- The role of different initial rest times on synthesized buffer layer and UV sensing of ZnO nanorods grown on rotational substrate vol.29, pp.10, 2018, https://doi.org/10.1007/s10854-018-8839-0
- Fabrication of H2 Gas Sensor Based on ZnO Nanarod Arrays by a Sonochemical Method vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3735
- Effect of annealing process in tuning of defects in ZnO nanorods and their application in UV photodetectors vol.127, pp.11, 2011, https://doi.org/10.1016/j.ijleo.2016.01.177