DOI QR코드

DOI QR Code

Post-Annealing Effects on Properties of ZnO Nanorods Grown on Au Seed Layers

  • Cho, Min-Young (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Kim, Min-Su (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Choi, Hyun-Young (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Yim, Kwang-Gug (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Leem, Jae-Young (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
  • Received : 2010.11.25
  • Accepted : 2011.01.06
  • Published : 2011.03.20

Abstract

ZnO nanorods were grown by hydrothermal method. Two kinds of seed layers, Au film and island seed layers were prepared to investigate the effect of seed layer on ZnO nanorods. The ZnO nanorod on Au island seed layer has more unifom diameter and higher density compared to that of ZnO nanorod on Au film seed layer. The ZnO nanorods on Au island seed layer were annealed at various temperatures ranging from 300 to $850^{\circ}C$. The pinholes at the surface of the ZnO nanorods is formed as the annealing temperature is increased. It is noted that the pyramid structure on the surface of ZnO nanorod is observed at $850^{\circ}C$. The intensity of ZnO (002) diffraction peak in X-ray diffraction pattern and intensity of near band edge emission (NBE) peak in photoluminescence (PL) are increased as the ZnO nanorods were annealed at the temperature of $300^{\circ}C$.

Keywords

References

  1. Zhang, Y.; Du, G.; Liu, D.; Wang, X.; Ma, Y.; Wang, J.; Yin, J.; Yang, X.; Hou, X.; Yang, S. J. Crystal Growth 2002, 243, 439. https://doi.org/10.1016/S0022-0248(02)01569-5
  2. Golego, N.; Studenikin. S. A.; Cocivera, M. J. Electochem. Soc. 2000, 147, 1592. https://doi.org/10.1149/1.1393400
  3. Rau, U.; Schmidt, M. Thin Solid Films 2001, 387, 141. https://doi.org/10.1016/S0040-6090(00)01737-5
  4. Liu, Y.; Gorla, C. R.; Liang, S. J. Electron. Mater. 2000, 29, 60.
  5. Soki, T.; Hatanaka, Y.; Look, D. C. Appl. Phys. Lett. 2000, 76, 3257. https://doi.org/10.1063/1.126599
  6. Kong, Y. C.; Yu, D. P.; Zhang, B.; Fang, W.; Feng, S. Q. Appl. Phys. Lett. 2001, 78, 407. https://doi.org/10.1063/1.1342050
  7. Maejima, K.; Ueda, M.; Fujita, S. Z.; Fujita, S. G. Jpn. J. Appl. Phys. 2003, 42, 2600. https://doi.org/10.1143/JJAP.42.2600
  8. Wang, Z. L.; Kong, X. Y.; Ding, Y.; Gao, P.; Hughes, W. L.; Yang, R. Adv. Funct. Mater. 2004, 14, 943. https://doi.org/10.1002/adfm.200400180
  9. Li, Y.; Ding, Y.; Wang, Z. Adv. Mater. 1999, 11, 844. https://doi.org/10.1002/(SICI)1521-4095(199907)11:10<844::AID-ADMA844>3.0.CO;2-N
  10. Look, D. C. Mater. Sci. Eng. B 2001, 80, 383. https://doi.org/10.1016/S0921-5107(00)00604-8
  11. Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin, V.; Cho, S. J.; Morkoc, H. A. J. Appl. Phys. 2005, 98, 041301. https://doi.org/10.1063/1.1992666
  12. Tian, Z. R.; Voigt, J. A.; Liu, J.; Mckenzie, B.; Mcdermott, M. J.; Rodriguez, M. A.; Konishi, H.; Xu, H. Nat. Mater. 2003, 2, 821. https://doi.org/10.1038/nmat1014
  13. Baruah, S.; Dutta, J. Sci. Technol. Adv. Mater. 2009, 10, 013001. https://doi.org/10.1088/1468-6996/10/1/013001
  14. Lee, Y.; Zhange, Y.; Ng, S. L. G.; Kartawidjaja, F. C.; Wang, J. J. Am. Ceram. Soc. 2009, 92, 1940. https://doi.org/10.1111/j.1551-2916.2009.03148.x
  15. Sun, S. H.; Meng, G. W.; Zhang, M. G.; Hao, Y. F.; Zhang, X. R.; Zhang, L. D. J. Phys. Chem. B 2003, 107, 13029. https://doi.org/10.1021/jp035763y
  16. Massalski, T. B. Binary Alloy Phase Diagrams; OH: ASM International: 1990; p 428.
  17. Lee, Y.-J; Sounart, T. L.; Scrymgeour, D. A.; Voigt, J. A.; Hsu, J. W. P. J. Cryst. Growth 2007, 304, 80. https://doi.org/10.1016/j.jcrysgro.2007.02.011
  18. Romero, R.; Leinen, D.; Dalchiele, E. A.; Ramos-Barrado, J. R.; Martin, F. Thin Solid Films 2006, 515, 1942. https://doi.org/10.1016/j.tsf.2006.07.152
  19. Kim, S. S.; Lee, B. T. Thin Solid Films 2004, 446, 307. https://doi.org/10.1016/j.tsf.2003.09.057
  20. Jeon, S. M.; Kim, M. S.; Cho, M. Y.; Choi, H. Y.; Yim, K. G.; Kim, G. S.; Kim, H. G.; Leem, Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Lee, J. I.; J.-Y. J. Korean Phys. Soc. 2010, 57, 1477. https://doi.org/10.3938/jkps.57.1477
  21. Lee, S. H.; Lee, H. J.; Goto, H.; Cho, M. W.; Yao, T. Phy. Stat. Sol.(c) 2007, 4, 1747. https://doi.org/10.1002/pssc.200674279
  22. Wang, X.; Tian, Z.; Yu, T.; Tian, H.; Zhang, J.; Yuan, S.; Zhang, X.; Li, Z.; Zou, Z. Nanotech. 2010, 21, 065703. https://doi.org/10.1088/0957-4484/21/6/065703
  23. Zhou, H.; Alves, H.; Hofmann, D. M.; Kriegseis, W.; Meyer, B. K.; Kaczmarczyk, G.; Hoffmann, A. Appl. Phys. Lett. 2002, 80, 210. https://doi.org/10.1063/1.1432763
  24. Kreye, M.; Postels, B.; Wehmann, H.-H.; Fuhrmann, D.; Hangleiter, A.; Waag, A. Phys. Stat. Sol. (c) 2006, 3, 992. https://doi.org/10.1002/pssc.200564649
  25. Xie, R.; Sekiguchi, T.; Ishigaki, T.; Ohashi, N.; Li, D.; Yang, D.; Liu, B.; Bando, Y. Appl. Phys. Lett. 2006, 88, 134103. https://doi.org/10.1063/1.2189200

Cited by

  1. Effect of Different Seed Solutions on the Morphology and Electrooptical Properties of ZnO Nanorods vol.2012, pp.1687-4129, 2012, https://doi.org/10.1155/2012/452407
  2. O Seed Layers with Various Cd Mole Fractions vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.189
  3. Fabrication and photoluminescence studies of porous ZnO nanorods vol.61, pp.1, 2012, https://doi.org/10.3938/jkps.61.102
  4. Effects of annealing atmosphere and temperature on properties of ZnO thin films on porous silicon grown by plasma-assisted molecular beam epitaxy vol.8, pp.2, 2012, https://doi.org/10.1007/s13391-012-1089-z
  5. Effects of position, thickness, and annealing temperature of Ag buffer layer on the shape of ZnO nanocrystals grown by a simple hydrothermal process vol.28, pp.24, 2013, https://doi.org/10.1557/jmr.2013.354
  6. Effects of Doping with Al, Ga, and In on Structural and Optical Properties of ZnO Nanorods Grown by Hydrothermal Method vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1205
  7. Effects of post-heated ZnO seed layers on structural and optical properties of ZnO nanostructures grown by hydrothermal method vol.9, pp.3, 2013, https://doi.org/10.1007/s13391-013-2190-7
  8. Seed-layer-free hydrothermal growth of zinc oxide nanorods on porous silicon vol.10, pp.3, 2014, https://doi.org/10.1007/s13391-013-3139-6
  9. Low-Frequency Noise Spectra of Laterally Bridged ZnO Microrod-Based Photodetectors vol.20, pp.6, 2014, https://doi.org/10.1109/JSTQE.2014.2325213
  10. Effect of annealing and hydrogen plasma treatment on the luminescence and persistent photoconductivity of polycrystalline ZnO films vol.121, pp.24, 2017, https://doi.org/10.1063/1.4989826
  11. Analysis of structural and UV photodetecting properties of ZnO nanorod arrays grown on rotating substrate vol.85, pp.2, 2018, https://doi.org/10.1007/s10971-017-4540-7
  12. Effect of Heat and Plasma Treatments on the Photoluminescence of Zinc-Oxide Films vol.52, pp.2, 2018, https://doi.org/10.1134/S1063782618020021
  13. The role of different initial rest times on synthesized buffer layer and UV sensing of ZnO nanorods grown on rotational substrate vol.29, pp.10, 2018, https://doi.org/10.1007/s10854-018-8839-0
  14. Fabrication of H2 Gas Sensor Based on ZnO Nanarod Arrays by a Sonochemical Method vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3735
  15. Effect of annealing process in tuning of defects in ZnO nanorods and their application in UV photodetectors vol.127, pp.11, 2011, https://doi.org/10.1016/j.ijleo.2016.01.177