• Title/Summary/Keyword: nano porous

Search Result 431, Processing Time 0.03 seconds

NanoBio-Technology for Practical Implementation in Drug Discovery

  • Min, Dal-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.83-83
    • /
    • 2013
  • To date, various nanobiotechnologicalapproaches for biosensors and drug development have been explosively studied. Despite of successful demonstrations, the new technologies hardly enjoyed routine applications in practical nanobiomedicine. Here, researchers trained at the interface of basic sciences and engineering are expected to play critical roles. In this tutorial, I will introduce recent studies which harness graphene derivatives for developing bioanalytical platforms to quantitatively analyze various enzyme activities and biomarkers. The systems rely on attractive interaction between graphene oxide and nucleic acids or phospholipids. Recently, one of the graphene-based bioassay system was applied to anti-viral drug screening and potent hit compounds were identified to treat hepatitis C. This study clearly shows that a new nanobio-technology can be routinely implemented in drug discovery, providing many advantages over conventional methods.

  • PDF

A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads

  • Abdulrazzaq, Mohammed Abdulraoof;Kadhim, Zeyad D.;Faleh, Nadhim M.;Moustafa, Nader M.
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2020
  • Dynamic stability of graded nonlocal nano-dimension plates on elastic substrate due to in-plane periodic loads has been researched via a novel 3- unknown plate theory based on exact position of neutral surface. Proposed theory confirms the shear deformation effects and contains lower field components in comparison to first order and refined 4- unknown plate theories. A modified power-law function has been utilized in order to express the porosity-dependent material coefficients. The equations of nanoplate have been represented in the context of Mathieu-Hill equations and Chebyshev-Ritz-Bolotin's approach has been performed to derive the stability boundaries. Detailed impacts of static/dynamic loading parameters, nonlocal constant, foundation parameters, material index and porosities on instability boundaries of graded nanoscale plates are researched.

Fabrication of Conducting Polymer Nanowires using Block Copolymer Nano-porous Templates for Photovoltaic Device

  • Lee, Jeong-In;Yu Jae-Woong;Kim, Jin-Kon;Russell Thomas P.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.312-312
    • /
    • 2006
  • Block copolymers with well-defined nanoscopic structures have recently gained much attention for their potential uses as functional nanostructures. Here, we show that nanoporous templates made from polystyrene-block-poly (methyl methacrylate) (PS-b-PMMA) satisfy a novel design concept. At first, arrays of nanoscopic cylindrical microdomains oriented normal to the surface can easily be prepared. Then, we fabricated ultra high density arrays of conducting polymer as poly(pyrrole) (Ppy) and poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires with diameters of $25{\sim}40\;nm$ on the ITO glass by electropolymerization of the monomers inside nanoholes. These high density arrays of conducting polymer nanowires could be used as P-type materials for photovoltaic devices.

  • PDF

A New Nanohybrid Photocatalyst between Anatase (TiO2) and Layered Titanate

  • Lee, Hyun-Cheol;Jeong, Hyun;Oh, Jae-Min;Choy, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.3
    • /
    • pp.477-480
    • /
    • 2002
  • A new microporous TiO2-pillared layered titanate has been successfully prepared by hybridizing the exfoliated titanate with the anatase TiO2 nano-sol. According to the X-ray diffraction analysis and N2 adsorption-desorption isotherms, the TiO2-pillared layered titanate showed a pillar height of ~2 nm with a high surface area of ~460 m2/g and a pore size of ~0.95 nm, indicating that a microporous pillar structure is formed. Its photocatalytic activity was evaluated by measuring the photodegradation rate of 4-chlorophenol during irradiation of catalyst suspensions in an aqueous solution. An enhancement in activity of ca. 170% was obtained for TiO2-pillared layered titanate compared to that of the pristine compound such as layered cesium titanate.

Effect of Dealloying Condition on the Formation of Nanoporous Structure in Melt-Spun Al60Ge30Mn10 Alloy

  • Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.160-163
    • /
    • 2016
  • Effect of dealloying condition on the formation of nanoporous structure in melt-spun $Al_{60}Ge_{30}Mn_{10}$ alloy has been investigated in the present study. In as-melt-spun $Al_{60}Ge_{30}Mn_{10}$ alloy spinodal decomposition occurs in the undercooled liquid during cooling, leading to amorphous phase separation. By immersing the as-melt-spun $Al_{60}Ge_{30}Mn_{10}$ alloy in 5 wt% HCl solution, Al-rich amorphous region is leached out, resulting in an interconnected nano-porous $GeO_x$ with an amorphous structure. The dealloying temperature strongly affects the whole dealloying process. At higher dealloying temperature, dissolution kinetics and surface diffusion/agglomeration rate become higher, resulting in the accelerated dealloying kinetics, i.e., larger dealloying depth and coarser pore-ligament structure.

Characteristic of SnO2 Gas Sensing with porous nano structure (다공성 나노구조 SnO2 가스 검지 특성)

  • Han, Min-A;Kim, Hyeon-Jong;Lee, Ho-Nyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.250-250
    • /
    • 2015
  • 사람의 후각으로 감지할 수 없는 독성, 폭발성 가스로 인한 사고 발생률이 높아지면서 고감도의 가스 센서 필요성이 증가 되고 있다. 본 연구에서는 안정적인 가스 감지를 위해 물리기상증착의 다양한 공정 조건을 변화시켜 다공성 나노구조의 $SnO_2$ 가스 검지 전극층을 제작하였다. SEM 분석을 통하여 $SnO_2$ 가스 검지층이 다공성 나노 구조를 지님을 확인하였고, TEM 분석을 통하여 $SnO_2$ 입자간의 안정적인 접합을 확인하였다. 또한 다공성 나노 구조의 $SnO_2$를 가스 검지층으로 사용하여 가스센서를 제작하였고, 가스 농도에 따른 감도 변화를 확인 할 수 있었다.

  • PDF

Preparation of Porous Nano Template of Parabola Shape by Anodic Aluminum Oxide (알루미늄 양극산화에 의한 포물선 형태의 다공성 나노 템플릿 제조)

  • Kim, An-Na;Kim, Hyeon-Jong;Im, Ha-Na;Jeong, Ji-Hye;Sin, Chi-Ho;Park, Chun-Man;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.274-274
    • /
    • 2015
  • 양극산화를 통해 생기는 다공성 알루미나 산화막의 기공은 전해질과 적절한 온도 등 제작 조건에서 자기 조립하여 고도로 정렬된 (Highly ordered) 나노기공을 가지는 AAO (AnodicAluminum Oxide)를 제조하는데 주로 쓰이고 있다. 본 연구에서는 다단계 산화방법으로 빛의 파장에 무관하게 빛의 반사를 매우 효과적으로 줄이는 포물선 형태의 Moth-eye 구조를 가지는 템플릿을 제조하였다. SEM 측정을 통해 구조체 다공성 알루미늄 산화막의 표면적 변화를 알 수 있었고, 일정한 크기와 모양의 pore가 규칙적으로 형성된 것을 확인하였다. 그리고 제조된 템플릿 내부에 고분자를 채워 포물선 형태의 나노핀을 갖는 필름을 제조할 수 있었다.

  • PDF

Reduction Behaviors of Nitric Oxides on Copper-decorated Mesoporous Molecular Sieves

  • Cho, Ki-Sook;Kim, Byung-Joo;Kim, Seok;Kim, Sung-Hyun;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.100-103
    • /
    • 2010
  • In this study, NO reduction behaviors of copper-loaded mesoporous molecular sieves (Cu/MCM-41) have been investigated. The Cu loading on MCM-41 surfaces was accomplished by a chemical reduction method with different Cu contents (5, 10, 20, and 40%). $N_2/77$ K adsorption isotherm characteristics, including the specific surface area and pore volume, were studied by BET's equation. NO reduction behaviors were confirmed by a gas chromatography. From the experimental results, the Cu loading amount on MCM-41 led to the increase of NO reduction efficiency in spite of decreasing the specific surface area of catalysts. This result indicates that highly ordered porous structure in the MCM-41 and the presence of active metal particles lead the synergistical NO reduction reactions due to the increase in adsorption energy of MCM-41 surfaces by the Cu particles.

Effects of Electrolyte Concentration and Relative Cathode Electrode Area Sizes in Titania Film Formation by Micro-Arc Oxidation

  • Lee, Yong-K.;Lee, Kang-Soo
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.171-174
    • /
    • 2010
  • MAO (micro-arc oxidation) is an eco-friendly convenient and effective technology to deposit high-quality oxide coatings on the surfaces of Ti, Al, Mg and their alloys. The roles of the electrolyte concentration and relative cathode electrode area sizes in the grown oxide film during titanium MAO were investigated. The higher the concentration of the electrolyte, the lower the $R_{total}A$ value. The oxide film produced by the lower concentration of the electrolyte is thinner and less uniform than the film by the higher concentration, which is thick and porous. The cathode area size must be bigger than the anode area size in order to minimize the voltage drop across the cathode. The ratio of the cathode area size to the anode area size must be bigger than 8. Otherwise, the cathode will be another source for voltage drop, which is detrimental to and slows down the oxide growth.