• Title/Summary/Keyword: nano porous

Search Result 431, Processing Time 0.032 seconds

Fabrication of Porous Nano Particles from Al-Cu Alloy Nano Powders Prepared by Electrical Wire Explosion (전기선 폭발법으로 제조된 Al-Cu 합금 나노분말을 이용한 다공성 나노 입자 제조)

  • Park, Je-Shin;Kim, Won-Baek;Suh, Chang-Youl;Ahn, Jong-Gwan;Kim, Byoung-Kyu
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.234-238
    • /
    • 2008
  • Al-Cu alloy nano powders have been produced by the electrical explosion of Cu-plated Al wire. The porous nano particles were prepared by leaching for Al-Cu alloy nano powders in 40wt% NaOH aqueous solution. The surface area of leached powder for 5 hours was 4 times larger than that of original alloy nano powder. It is demonstrated that porous nano particles could be obtained by selective leaching of alloy nano powder. It is expected that porous Cu nano powders can be applied for catalyst of SRM (steam reforming methanol).

Nano-porous Silicon Microcavity Sensors for Determination of Organic Fuel Mixtures

  • Pham, Van Hoi;Bui, Huy;Hoang, Le Ha;Nguyen, Thuy Van;Nguyen, The Anh;Pham, Thanh Son;Ngo, Quang Minh
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.423-427
    • /
    • 2013
  • We present the preparation and characteristics of liquid-phase sensors based on nano-porous silicon multilayer structures for determination of organic content in gasoline. The principle of the sensor is a determination of the cavity-resonant wavelength shift caused by refractive index change of the nano-porous silicon multilayer cavity due to the interaction with liquids. We use the transfer matrix method (TMM) for the design and prediction of characteristics of microcavity sensors based on nano-porous silicon multilayer structures. The preparation process of the nano-porous silicon microcavity is based on electrochemical etching of single-crystal silicon substrates, which can exactly control the porosity and thickness of the porous silicon layers. The basic characteristics of sensors obtained by experimental measurements of the different liquids with known refractive indices are in good agreement with simulation calculations. The reversibility of liquid-phase sensors is confirmed by fast complete evaporation of organic solvents using a low vacuum pump. The nano-porous silicon microcavity sensors can be used to determine different kinds of organic fuel mixtures such as bio-fuel (E5), A92 added ethanol and methanol of different concentrations up to 15%.

Synthesis of nano porous indium tin oxide by sol-gel combustion hybrid method (졸겔 연소법에 의한 nano crystalline ITO제작 및 특성)

  • Jung, Ki-Young;Kwak, Dong-Joo;Sung, Youl-Moon;Park, Cha-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1328_1329
    • /
    • 2009
  • Nano porous indium tin oxide (ITO) powder was synthesized employing a new route sol-gel combustion hybrid method using Ketjen Black as a fuel. The nano porous ITO powder was composed of $SnCl_4$-98.0% and $In(NO_3)_3{\cdot}XH_2O$-99.999%, produce with a $NH_4OH$ with sol-gel method as a catalyst [1,2]. Crystal structures were examined by powder X-ray diffraction (XRD), and those results show shaper intensity peak at $25.6^{\circ}(2{\Theta})$ of $SnO_2$ by increased sintering temperature. A particle morphology as well as crystal size was investigated by scanning electron microscopy(FE-SEM), and the size of the nano porous powder was found to be in the range of 20~30nm. ITO films could controlled by nano porous powder at various sintering temperature in this paper[3,4]. The sol-gel combustion method was offered simple and effective route for the synthesis of nano porous ITO powder[5].

  • PDF

Nano-porous $Al_2O_3$ used as a protecting layer of AC Plasma Display Panel

  • Park, Sung-Yun;Hong, Sang-Min;Shin, Bhum-Jae;Cho, Jin-Hoon;Kim, Seong-Su;Park, Sung-Jin;Lee, Kyu-Wang;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.359-361
    • /
    • 2003
  • Nano-porous alumina was investigated as a protecting layer in an AC Plasma Display Panel. A 2 ${\mu}m$ thick nano-porous $Al_2O_3$ layer inserted with MgO was formed on the dielectric layer instead of the conventional 500 nm-thick MgO thin film. Both nano-porous $Al_2O_3$layer and inserted MgO were prepared by wet process. The luminance and luminous efficiency of 3-inch test panel adopting nano-porous $Al_2O_3$ was higher than that of the conventional PDP.

  • PDF

Electrochemical Characteristics of Porous Silicon/Carbon Composite Anode Using Spherical Nano Silica (구형 나노 실리카를 사용한 다공성 실리콘/탄소 음극소재의 전기화학적 특성)

  • Lee, Ho Yong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.459-464
    • /
    • 2016
  • In this study, the electrochemical characteristics of porous silicon/carbon composite anode were investigated to improve the cycle stability and rate performance in lithium ion batteries. In this study, the effect of TEOS and $NH_3$ concentration, mixing speed and temperature on particle size of nano silica was investigated using $St{\ddot{o}}ber$ method. Nano porous Si/C composites were prepared by the fabrication processes including the synthesis of nano $SiO_2$, magnesiothermic reduction of nano $SiO_2$ to obtain nano porous Si by HCl etching, and carbonization of phenolic resin. Also the electrochemical performances of nano porous Si/C composites as the anode were performed by constant current charge/discharge test, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DMC:EMC=1:1:1vol%). It is found that the coin cell using nano porous Si/C composite has the capacity of 2,006 mAh/g and the capacity retention ratio was 55.4% after 40 cycle.

Improved Conversion Efficiency of Dye-sensitized Solar Cells Based on TiO2 Porous Layer Coated TiO2 Nanotubes on a Titanium Mesh Substrate as Photoanode

  • Lim, Jae-Min;He, Weizhen;Kim, Hyung-Kook;Hwang, Yoon-Hwae
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.90-96
    • /
    • 2013
  • We report here flexible dye-sensitized solar cells (DSSC) based on Ti-mesh electrodes that show good mechanical flexibility and electrical conductivity. $TiO_2$ nanotube arrays prepared by electrochemical anodizing Ti-mesh substrate were used as photoanode. A Pt-coated Ti-mesh substrate was used as counter electrode. The photoanodes were modified by coating a $TiO_2$ porous layer onto the $TiO_2$ nanotubes in order to increase the specific surface area. To increase the long term stability of the DSSCs, a gel type electrolyte was used instead of a conventional liquid type electrolyte. The DSSC based on $33.2{\mu}m$ long porous $TiO_2$ nanotubes exhibited a better energy conversion efficiency of ~2.33%, which was higher than that of the DSSCs based on non-porous $TiO_2$ nanotubes.

Study on Mechanism of Mechanical Damping System Based on The Colloidal Suspension of Nano-Porous Particles (나노 다공성 입자의 콜로이드 서스펜션을 이용한 기계적 감쇠기구에 대한 연구)

  • W.J, Song;Kim, J.;B.Y. Moon;B.S. Kang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.359-362
    • /
    • 2003
  • Damping systems have been widely used to various industrial structures and are mainly hydraulic and pneumatic devices nowadays. In this work, a novel damping system based on the colloidal suspension in the field of nanotechnology is investigated. The colloidal suspension consists of Iyophobic working fluid and hydrophobic-coated porous particle. The mechanism of mechanical energy dissipation in damping system based on the colloidal suspension with nano-porous particles is different from that of the existing hydraulic damping system. The absorbed energy of the damping system using colloidal suspension can be calculated through the mechanical equilibrium condition by the superficial tensions of liquid-gas Interface in the hydrophobic surface in nano-porous particles. The results from an analytic approach have a reasonable agreement with experimental results.

  • PDF

Preparation and Characterization of Porous Silicon and Carbon Composite as an Anode Material for Lithium Rechargeable Batteries

  • Park, Junsoo;Lee, Jae-Won
    • Journal of Powder Materials
    • /
    • v.22 no.1
    • /
    • pp.15-20
    • /
    • 2015
  • The composite of porous silicon (Si) and amorphous carbon (C) is prepared by pyrolysis of a nano-porous Si + pitch mixture. The nano-porous Si is prepared by mechanical milling of magnesium powder with silicon monoxide (SiO) followed by removal of MgO with hydrochloric acid (etching process). The Brunauer-Emmett-Teller (BET) surface area of porous Si ($64.52m^2g^{-1}$) is much higher than that before etching Si/MgO ($4.28m^2g^{-1}$) which indicates pores are formed in Si after the etching process. Cycling stability is examined for the nano-porous Si + C composite and the result is compared with the composite of nonporous Si + C. The capacity retention of the former composite is 59.6% after 50 charge/discharge cycles while the latter shows only 28.0%. The pores of Si formed after the etching process is believed to accommodate large volumetric change of Si during charging and discharging process.

Fabrication of Nano-Channeled Tin Oxide Film Electrode and Evaluation of Its Electrochemical Properties (나노 채널 구조를 가진 산화 주석 박막 전극 제조 및 전기화학적 특성 평가)

  • Park, Su-Jin;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • Thin film electrode consisting purely of porous anodic tin oxide with well-defined nano-channeled structure was fabricated for the first time and its electrochemical properties were investigated for application to an anode in a rechargeable lithium battery. To prepare the thin film electrode, first, a bi-layer of porous anodic tin oxides with well-defined nano-channels and discrete nano-channels with lots of lateral micro-cracks was prepared by pulsed and continuous anodization processes, respectively. Subsequent to the Cu coating on the layer, well-defined nano-channeled tin oxide was mechanically separated from the specimen, leading to an electrode comprised of porous tin oxide and a Cu current collector. The porous tin oxide nearly maintained its initial nano-structured character in spite of there being a series of fabrication steps. The resulting tin oxide film electrode reacted reversibly with lithium as an anode in a rechargeable lithium battery. Moreover, the tin oxide showed far more enhanced cycling stability than that of powders obtained from anodic tin oxides, strongly indicating that this thin film electrode is mechanically more stable against cycling-induced internal stress. In spite of the enhanced cycling stability, however, the reduction in the initial irreversible capacity and additional improvement of cycling stability are still needed to allow for practical use.

Ni-assisted Fabrication of GaN Based Surface Nano-textured Light Emitting Diodes for Improved Light Output Power

  • Mustary, Mumta Hena;Ryu, Beo Deul;Han, Min;Yang, Jong Han;Lysak, Volodymyr V.;Hong, Chang-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.4
    • /
    • pp.454-461
    • /
    • 2015
  • Light enhancement of GaN based light emitting diodes (LEDs) have been investigated by texturing the top p-GaN surface. Nano-textured LEDs have been fabricated using self-assembled Ni nano mask during dry etching process. Experimental results were further compared with simulation data. Three types of LEDs were fabricated: Conventional (planar LED), Surface nano-porous (porous LED) and Surface nano-cluster (cluster LED). Compared to planar LED there were about 100% and 54% enhancement of light output power for porous and cluster LED respectively at an injection current of 20 mA. Moreover, simulation result showed consistency with experimental result. The increased probability of light scattering at the nano-textured GaN-air interface is the major reason for increasing the light extraction efficiency.