• Title/Summary/Keyword: nano inclusion

Search Result 33, Processing Time 0.024 seconds

Solvothermal Synthesis and Characterization of Nano-sized Barium Titanate Powder

  • Choi, Kyoon;Kwon, Soon-Gyu;Kim, Byung-Ik
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.124-125
    • /
    • 2006
  • Multilayer ceramic capacitor (MLCC) miniaturization has increased the demand for superfine $BaTiO_3$ powder due to its thin dielectric layer. Hydrothermally synthesized $BaTiO_3$ powder a pseudo-cubic phase resulting in poor dielectric properties due to size effect and hydroxyl ion inclusion in the $BaTiO_3$ lattice. We attempted a superfine (lower than 100 nm) highly tetragonal $BaTiO_3$ powder via a solvothermal method without precipitating agent. The lattice parameters and the relative amounts of tetragonal and cubic phases were determined using Rietveld refinement.

  • PDF

The Effects of Composition, Solvent Selectivity, and Additive on the Morphology of Hybrid Nano Thin Films Composed of Self-Assembled Block Copolymer and Titanium Dioxide (자기조립 블록공중합체와 이산화티타늄으로 구성된 하이브리드 나노 박막의 모폴로지에 미치는 고분자의 조성, 용매의 선택성 및 첨가제의 영향)

  • Jang, Yoon-Hee;Cha, Min-Ah;Kim, Dong-Ha
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.465-469
    • /
    • 2008
  • Hybrid thin films composed of block copolymer(BCP) and $TiO_2$ with various morphologies on the nanoscale were fabricated using self-assembly of block copolymer combined with sol-gel process. The factors governing morphology changes considered in this study are block copolymer composition, selectivity of solvent and the inclusion of an additive. We also investigated the efficiency of photoluminescence for selected films with different morphologies. Micelle or nanowire structure can be derived from the self-assembly of poly (styrene-block-4-vinyl pyridine) (PS-b-P4VP) depending on the relative selectivity of the solvent for the two blocks, and the titanium tetraisopropoxide ($Ti{OCH (CH_3)_2}_4$, TTIP) is coordinated with nitrogen in P4VP block. Addition of a third component 3-pentadecylphenol into the BCP/sol-gel mixture solution induces morphology change as a result of the change of relative volume fraction of the BCP. We confirmed that the efficiency of $TiO_2$ fluorescence changes for films depending on morphologies.

Morphology of Bone-like Apatite Formation on Sr and Si-doped Hydroxyapatite Surface of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.79-79
    • /
    • 2017
  • Metallic biomaterials have been mainly used for the fabrication of medical devices for the replacement of hard tissue such as artificial hip joints, bone plates, and dental implants. Because they are very reliable on the viewpoint of mechanical performance. This trend is expected to continue. Especially, Ti and Ti alloys are bioinert. So, they do not chemically bond to the bone, whereas they physically bond with bone tissue. For their poor surface biocompatibility, the surface of Ti alloys has to be modified to improve the surface osteoinductivity. Recently, ceramic-like coatings on titanium, produced by plasma electrolytic oxidation (PEO), have been developed with calciumand phosphorus-enriched surfaces. A lso included the influences of coatings, which can accelerate healing and cell integration, as well as improve tribological properties. However, the adhesions of these coatings to the Ti surface need to be improved for clinical use. Particularly Silicon (Si) has been found to be essential for normal bone, cartilage growth and development. This hydroxyapatite, modified with the inclusion of small concentrations of silicon has been demonstrating to improve the osteoblast proliferation and the bone extracellular matrix production. Strontium-containing hydroxyapatite (Sr-HA) was designed as a filling material to improve the biocompatibility of bone cement. In vitro, the presence of strontium in the coating enhances osteoblast activity and differentiation, whereas it inhibits osteoclast production and proliferation. The objective of this work was to study Morphology of bone-like apatite formation on Sr and Si-doped hydroxyapatite surface of Ti-6Al-4V alloy after plasma electrolytic oxidation. Anodized alloys was prepared at 270V~300V voltages with various concentrations of Si and Sr ions. Bone-like apatite formation was carried out in SBF solution. The morphology of PEO, phase and composition of oxide surface of Ti-6Al-4V alloys were examined by FE-SEM, EDS, and XRD.

  • PDF

Bending of a cracked functionally graded nanobeam

  • Akbas, Seref Doguscan
    • Advances in nano research
    • /
    • v.6 no.3
    • /
    • pp.219-242
    • /
    • 2018
  • In this study, static bending of an edge cracked cantilever nanobeam composed of functionally graded material (FGM) subjected to transversal point load at the free end of the beam is investigated based on modified couple stress theory. Material properties of the beam change in the height direction according to exponential distributions. The cracked nanobeam is modelled using a proper modification of the classical cracked-beam theory consisting of two sub-nanobeams connected through a massless elastic rotational spring. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Euler-Bernoulli beam theory by using finite element method. In order to establish the accuracy of the present formulation and results, the deflections are obtained, and compared with the published results available in the literature. Good agreement is observed. In the numerical study, the static deflections of the edge cracked FGM nanobeams are calculated and discussed for different crack positions, different lengths of the beam, different length scale parameter, different crack depths, and different material distributions. Also, the difference between the classical beam theory and modified couple stress theory is investigated for static bending of edge cracked FGM nanobeams. It is believed that the tabulated results will be a reference with which other researchers can compare their results.

Investigating vibrational behavior of graphene sheets under linearly varying in-plane bending load based on the nonlocal strain gradient theory

  • Shariati, Ali;Barati, Mohammad Reza;Ebrahimi, Farzad;Singhal, Abhinav;Toghroli, Ali
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.265-276
    • /
    • 2020
  • A study that primarily focuses on nonlocal strain gradient plate model for the sole purpose of vibration examination, for graphene sheets under linearly variable in-plane mechanical loads. To study a better or more precise examination on graphene sheets, a new advance model was conducted which carries two scale parameters that happen to be related to the nonlocal as well as the strain gradient influences. Through the usage of two-variable shear deformation plate approach, that does not require the inclusion of shear correction factors, the graphene sheet is designed. Based on Hamilton's principle, fundamental expressions in regard to a nonlocal strain gradient graphene sheet on elastic half-space is originated. A Galerkin's technique is applied to resolve the fundamental expressions for distinct boundary conditions. Influence of distinct factors which can be in-plane loading, length scale parameter, load factor, elastic foundation, boundary conditions, and nonlocal parameter on vibration properties of the graphene sheets then undergo investigation.

Influence of Nanodispersed Organoclay on Rheological and Swelling Properties of Ethylene Propylene Diene Terpolymer

  • Acharya Himadri;Srivastava Suneel K.
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.132-139
    • /
    • 2006
  • The dispersion of organoclay in ethylene propylene diene terpolymer (EPDM) matrix was correlated with the rheological and swelling properties of nanocomposites. X-ray diffraction pattern (XRD) and transmission electron microscopic (TEM) analysis exhibited the disordered-intercalated structure of EPDM/organoclay nanocomposite. The extent of the disordered phase increased with increasing organoclay content up to a limiting value of 3 wt% after which equilibrium tended towards intercalation. The dispersion effect of organoclay in EPDM matrix was clarified by the physicochemical properties like rheological response and swelling thermodynamics in toluene. The increase in viscoelastic properties of EPDM nanocomposite with increasing organoclay content up to 3 wt%, followed by a subsequent decrease up to 4 wt%, was correlated in terms of the disordered and ordered states of the dispersed nano-clay sheets. Swelling measurements revealed that the change in entropy of the swelling increased with the increase in disorder level but decreased with the increase in intercalation level of organoclay in the disordered-intercalated nanocomposite. The increase in solvent uptake was comparable with the free volume in EPDM matrix upon inclusion of silicate particles, whereas the inhibition in solvent uptake for higher organoclay loading was described by bridging flocculation.

Enhancement of critical current density in $BaCeO_3$ doped $YBa_2Cu_3O_{7-\delta}$ thin Films deposited by TFA-MOD process (TFA-MOD공정에서 $BaCeO_3$ 첨가에 의한 $YBa_2Cu_3O_{7-\delta}$ 박막의 임계전류밀도 증가)

  • Lee, Jong-Beom;Kim, Byeong-Joo;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • The effect of $BaCeO_3$ doping on the critical current density of YBCO film by TFA-MOD method was studied. $BaCeO_3$ doping was made by two method; one is direct addition of $BaCeO_3$ nano-sized powder prepared by citrate process followed by grinding with planetary ball mill for 10 hours. Another is addition of Ba-Ce precursor solution prepared with Ba-acetate and Ce acetate dissolved in TFA to the YBCO-TFA precursor solution. The film was made by standard dip coating and heat treatment process with conversion temperature of $790^{\circ}C$ in 1000 ppm oxygen containing moisturized Ar gas atmosphere. The direct addition of $BaCeO_3$ powder resulted in YBCO film with good epitaxial growth and no evidence of second phase formation. The addition through precursor solution resulted in the increase of critical current density upto 30 at% doping and uniform dispersion of $BaCeO_3$ fine inclusion was confirmed by SEM-EDX.

Effects of Sr Additions on the Interfacial Reaction Layers Formed between Liquid Al-Si-Cu Alloy and Cast Iron

  • Kyoung-Min Min;Je-Sik Shin;Jeong-Min Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.9
    • /
    • pp.353-359
    • /
    • 2023
  • This study investigated the growth behavior and characteristics of compounds formed at the interface between a liquid Al-Si-Cu alloy and solid cast iron. Through microstructural analyses, it was observed that various AlFe and AlFeSi phases are formed at the interface, and the relative proportion of each phase changes when small amounts of strontium are added to the Al alloy. The results of the microstructural analysis indicate that the primary phases of the interfacial compounds in the Al-Si-Cu base alloy are Al8Fe2Si and Al4.5FeSi. However, in the Sr-added alloys, significant amounts of binary AlFe intermetallic compounds such as Al5Fe2 and Al13Fe4 formed, in addition to the AlFeSi phases. The inclusion of Sr has a slight diminishing effect on the rate at which the interfacial compounds layer thickens during the time the liquid Al alloy is in contact with the cast iron. The study also discusses the nano-indentation hardness and micro-hardness of the interfacial phases.

Tensile Strength and Surface Characteristics of Mn Steel with Ti Addition (Ti을 첨가한 Mn 강의 인장특성과 표면특성)

  • Ryung-kyung Hwang;Sung-Tae Yoon;Gyun-Yung Lee;Sun-Joong Hwang
    • Journal of Korea Foundry Society
    • /
    • v.44 no.1
    • /
    • pp.9-15
    • /
    • 2024
  • In this study, in order to improve the lifespan of parts made of manganese steel, manganese steel was cast by varying the amount of Ti added to the steel. In order to confirm the characteristics of the cast material, processing characteristics including tensile and surface characteristics and bearing ratio were investigated. It was confirmed that when the amount of Ti added to high manganese steel exceeds 0.5%, the strength of the alloy is improved due to grain refinement, and fine carbides are formed inside the steel. This results in increased resistance to surface wear compared to the alloy with only Mn added. There was no significant difference in the increase in tensile strength as the Ti content in manganese steel was increased. However, inclusion of Ti showed a small but greater effect on wear resistance compared to Mn, and the size and the distribution of carbides become coarse depending on the Ti content. and was evenly distributed. It was confirmed that the strength and surface properties of manganese steel can be improved by the addition of Ti to improve the lifespan of parts made with this steel. It was found that Ti is effective in developing materials with excellent wear resistance due to refinement of dendrite crystal grains. In the samples where Ti was added, the carbide appears to increase the resistance to surface roughness, and due to the nature of Mn steel, surface hardening begins to occur, which appears to extend the life.

Listener Auditory Perception Enhancement using Virtual Sound Source Design for 3D Auditory System

  • Kang, Cheol Yong;Mariappan, Vinayagam;Cho, Juphil;Lee, Seon Hee
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • When a virtual sound source for 3D auditory system is reproduced by a linear loudspeaker array, listeners can perceive not only the direction of the source, but also its distance. Control over perceived distance has often been implemented via the adjustment of various acoustic parameters, such as loudness, spectrum change, and the direct-to-reverberant energy ratio; however, there is a neglected yet powerful cue to the distance of a nearby virtual sound source that can be manipulated for sources that are positioned away from the listener's median plane. This paper address the problem of generating binaural signals for moving sources in closed or in open environments. The proposed perceptual enhancement algorithm composed of three main parts is developed: propagation, reverberation and the effect of the head, torso and pinna. For propagation the effect of attenuation due to distance and molecular air-absorption is considered. Related to the interaction of sounds with the environment, especially in closed environments is reverberation. The effects of the head, torso and pinna on signals that arrive at the listener are also objectives of the consideration. The set of HRTF that have been used to simulate the virtual sound source environment for 3D auditory system. Special attention has been given to the modelling and interpolation of HRTFs for the generation of new transfer functions and definition of trajectories, definition of closed environment, etc. also be considered for their inclusion in the program to achieve realistic binaural renderings. The evaluation is implemented in MATLAB.