• 제목/요약/키워드: nano composites

검색결과 644건 처리시간 0.032초

Several models for bending and buckling behaviors of FG-CNTRCs with piezoelectric layers including size effects

  • Heidari, Farshad;Afsari, Ahmad;Janghorban, Maziar
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.193-210
    • /
    • 2020
  • In this research, beside presenting real images of produced Functionally Graded Carbon Nanotube-Reinforced Composites (FG-CNTRCs) and a brief review of the synthesis method of FG-CNTRCs, static and buckling analysis of FG-CNTRC with piezoelectric layers are investigated. It is assumed that the material properties of FG-CNTRC are varied through the thickness direction using four different distributions of Carbon Nanotubes (CNTs). To capture the size effects, nonlocal elasticity theory proposed by A.C. Eringen is also adopted in our model. One of the topics in our paper is using a higher order theory with eight different displacement fields and comparing their results with each other. To solve the governing equations, an analytical method is used to find the deflections and critical buckling loads of FG-CNTRCs. To show the accuracy of present methodology, our results are compared with the results of simply supported rectangular nano plates available in the literature. In this research, the effects of aspect ratio, piezoelectric layer and nonlocal parameter are also studied. It is hoped that this work leads to more accurate models on FG-CNTRC.

초전도 전력용 재료 (Highly functional materials for Electric power)

  • 이상헌;구경완
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.2152-2153
    • /
    • 2011
  • According to a sharp increase in demand for electricity supply secure, and $CO_2$ regulation in accordance with global environmental problems and to solve problems, etc. These factor less pollution, higher energy conversion hyoyulin way that the new electrical equipment, nano-composites The rapid degeneration of the unit study utilizing the power that is required is Free. Accordingly, cables, transformers and switchgear (GIS)-capacity of power equipment, such as, high-voltage high-density along with the miniaturization of equipment have made angry the reliability of these devices is becoming a very important issue. Insulation materials used in electrical equipment for high voltage withstand, power equipment, power equipment due to aging and overloading caused by a weakening of the insulation failure and replacement in accordance with the age due to increased costs because of the reliability of electrical equipment should be secured should. Therefore, improved performance and longevity of insulation material is recognized as an important challenge. In this study, power isolation and degeneration of the unit for use in various parts of the molding epoxy resin to improve the insulation performance of the epoxy resin by varying the added amount of nano-SiO2 nanocomposites made epoxy/SiO2 analysis and breakdown properties of the experiment want to improve the electrical properties through the geometry.

  • PDF

Nano-and-Micro Mixture Composites에대한 절연파괴 Weibull Plot 특성 연구 (Weibull Plot of Electrical Breakdown Strength for Nano-and-Micro Mixture Composites)

  • 박재준;이창훈;김정호;조대령;이대균;이상협;김재봉
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1378_1380
    • /
    • 2009
  • 절연파괴 강도에대한 특성분석을 위해 와이블 plot을 이용하였다. ENMMC에서 실란처리와 미처리특성에서 실란처리된 결과 형상파라미터가 상대적으로 높은 값을 나타내었다. 이는 절연파괴결과가 균질함을 분명하게 나타낸 결과이다. 또한 스케일파리미터에서도 처리된 결과가 상대적으로 높은 결과를 보이고 있다. 나노입자 충진함량에 대한 효과에서도 체적비로 6.2vol%가 24.87vol%보다 월등하게 높은 형상파리미터와 스케일 파리미터를 나타내었다. 현장에서는 B10의 수명이 누적확률(63.2%)보다 오히려 유효한 평가자료 라고 사료된다. 역시 실란처리 된 결과가 미처리된 것에 비하여 그리고 나노입자 충진함량이 적을수록 높은 결과를 나타내었다. 이로서 중전기기 산업절연재료로서 향후 전망을 크게 할 것으로 본다.

  • PDF

Heat Sink용 Mo-Cu 합금 재료의 열적 특성 (A Study on the Thermal Properties of Mo-Cu Composites as a Heat Sink Material)

  • 황창규;장건익;박치완;김태형;우용원
    • 열처리공학회지
    • /
    • 제16권6호
    • /
    • pp.311-314
    • /
    • 2003
  • In Mo-Xwt%Cu compound, Physical and thermal properties were systematically evaluated in terms of Cu contents and sintering temperature. Typically Cu contents were varied from 15 to 25wt% and also the Sintering temperatures were changed from $1115^{\circ}C$ to $1350^{\circ}C$. In physical properties, Mo-15~25wt%Cu has the maximum density of 95% while Mo-20wt%Cu has the maximum thermal conductivity of 165.179[${\mu}/m^{\circ}C$] at sintering temperature of $1300^{\circ}C$. Especially, Mo-25wt%Cu has the maximum hardness of 173.4 at sintering temperature of $1150^{\circ}C$ and the maximum thermal expansion of 9.0[W/mK] as the specimen heated in the range of temperature from $50^{\circ}C$ to $400^{\circ}C$. Based on electrical conductivity measurements, the relative density increased within creasing Cu contents and the values were in the range of 100~150[W/mK].

플라이애시-고로슬래그 기반 지오폴리머 세라믹스의 열적특성 (Thermal Property of Geopolymer Ceramics Based on Fly Ash-Blast Furnace Slag)

  • 김진호;남인탁;박현;김경남
    • 한국재료학회지
    • /
    • 제26권10호
    • /
    • pp.521-527
    • /
    • 2016
  • Geopolymers have many advantages over Portland cement, including energy efficiency, reduced greenhouse gas emissions, high strength at early age and improved thermal resistance. Alkali activated geopolymers made from waste materials such as fly ash or blast furnace slag are particularly advantageous because of their environmental sustainability and low cost. However, their durability and functionality remain subjects for further study. Geopolymer materials can be used in various applications such as fire and heat resistant fiber composites, sealants, concretes, ceramics, etc., depending on the chemical composition of the source materials and the activators. In this study, we investigated the thermal properties and microstructure of fly ash and blast furnace slag based geopolymers in order to develop eco-friendly construction materials with excellent energy efficiency, sound insulation properties and good heat resistance. With different curing times, specimens of various compositions were investigated in terms of compressive strength, X-ray diffraction, thermal property and microstructure. In addition, we investigated changes in X-ray diffraction and microstructure for geopolymers exposed to $1,000^{\circ}C$ heat.

Preparation of Bipolar Plate for Fuel Cell Using CNT/Graphite Nano-Composite

  • Choi, Jong-Min;Kim, Tae-Jin;Hyun, Min-Soo;Peck, Dong-Hyun;Kim, Sang-Kyung;Lee, Byung-Rok;Park, Jong-Soo;Jung, Doo-Hwan
    • Carbon letters
    • /
    • 제6권3호
    • /
    • pp.181-187
    • /
    • 2005
  • Bipolar plates require some specific properties such as electrical conductivity, mechanical strength, chemical stability, and low permeability for the fuel cell application. This study investigated the effects of carbon nanotube (CNT) contents and process conditions of hot press molding on the electrical and physical properties using CNT 3~7 wt% added graphite nano-composites in the curing temperatures range of 140~$200^{\circ}C$ and pressure of 200~300 kg/$cm^2$. Bulk density, hardness and flexural strength increased with increasing CNT contents, curing pressure and temperature. With the 7 wt% CNT added noncomposite, the electrical resistance improved by 30% and the flexural strength increased by 25% as compared to that without CNT at the temperature of $160^{\circ}C$ and pressure of 300 kg/$cm^2$. These properties were close to the DOE reference criteria as bulk resistance of 13 $m{\Omega}cm$ and tensile strength of 515 kg/$cm^2$.

  • PDF

충격압분공정으로 제조된 나노 니켈/알루미늄 혼합분말재의 특성 평가 (Evaluation of the Reactivity of Bulk Nano Ni/Al Powder Manufactured by Shock Compaction Process)

  • 김우열;안동현;박이주;김형섭
    • 소성∙가공
    • /
    • 제26권4호
    • /
    • pp.216-221
    • /
    • 2017
  • Recently, interest in multifunctional energetic structural materials (MESMs) has grown due to their multifunctional potential, especially in military applications. However, there are few studies about extrinsic factors that govern the reactivity of MESMs. In this paper, a shock compaction process was performed on the nano Ni/Al-mixed powder to investigate the effect of particle size on the shock reaction condition. Additionally, heating the statically compacted specimen was also performed to compare the mechanical properties and microstructure between reacted and unreacted material. The results show that the agglomerated structure of nanopowders interrupts the reaction by reducing the elemental boundary. X-ray diffraction analysis shows that the NiAl and $Ni_3Al$ intermetallics are formed on the reacted specimen. The microhardness results show that the $Ni_3Al$ phase has a higher hardness than NiAl, but the portion of $Ni_3Al$ in the reacted specimen is minor. In conclusion, using Ni/Al composites as a reactive material should focus on energetic use.

Processing of Nano-Sized Metal Alloy Dispersed $Al_2O_3$ Nanocomposites

  • Oh, Sung-Tag;Seok Namkung;Lee, Jai-Sung;Kim, Hyoung-Seop;Tohru Sekino
    • 한국분말재료학회지
    • /
    • 제8권3호
    • /
    • pp.157-162
    • /
    • 2001
  • An optimum route to fabricate the ferrous alloy dispersed $Al_2O_3$ nanocomposites such as $Al_2O_3$/Fe-Ni and $Al_2O_3$/Fe-Co with sound microstructure and desired properties was investigated. The composites were fabricated by the sintering of powder mixtures of $Al_2O_3$ and nano-sized ferrous alloy, in which the alloy was prepared by solution-chemistry routes using metal nitrates powders and a subsequent hydorgen reduction process. Microstructural observation of reduced powder mixture revealed that the Fe-Ni or Fe-Co alloy particles of about 20 nm in size homogeneously surrounded $Al_2O_3$, forming nanocomposite powder. The sintered $Al_2O_3$/Fe-Ni composite showed the formation of Fe$Al_2O_4$ phase, while the reaction phases were not observed in $Al_2O_3$/Fe-Co composite. Hot-pressed $Al_2O_3$/Fe-Ni composite showed improved mechanical properties and magnetic response. The properties are discussed in terms of microstructural characteristics such as the distribution and size of alloy particles.

  • PDF

분말야금법을 활용한 나노 하이브리드 구조 철-망간계 분말야금재 제조 (Development of Fe-Mn-based Hybrid Materials Containing Nano-scale Oxides by a Powder Metallurgical Route)

  • 전종규;김정준;최현주
    • 한국분말재료학회지
    • /
    • 제27권3호
    • /
    • pp.203-209
    • /
    • 2020
  • The automotive industry has focused on the development of metallic materials with high specific strength, which can meet both fuel economy and safety goals. Here, a new class of ultrafine-grained high-Mn steels containing nano-scale oxides is developed using powder metallurgy. First, high-energy mechanical milling is performed to dissolve alloying elements in Fe and reduce the grain size to the nanometer regime. Second, the ball-milled powder is consolidated using spark plasma sintering. During spark plasma sintering, nanoscale manganese oxides are generated in Fe-15Mn steels, while other nanoscale oxides (e.g., aluminum, silicon, titanium) are produced in Fe-15Mn-3Al-3Si and Fe-15Mn-3Ti steels. Finally, the phases and resulting hardness of a variety of high-Mn steels are compared. As a result, the sintered pallets exhibit superior hardness when elements with higher oxygen affinity are added; these elements attract oxygen from Mn and form nanoscale oxides that can greatly improve the strength of high-Mn steels.

고차단성 자동차 부품용 고무소재 (Elastomeric High Barrier Materials for Vehicle)

  • 김진국
    • Elastomers and Composites
    • /
    • 제46권1호
    • /
    • pp.2-9
    • /
    • 2011
  • 가스와 증기에 대한 투과성(Permeability to gases and Vapors)은 고무 제품을 타이어 튜브나 다이아후램(diaphragm)과 같은 제품으로 사용하고자 할 때 아주 중요한 특성이다. 모든 고무는 가스와 증기에 대하여 투과성이 있다. 그러나 그 투과 속도는 고무 재질에 따라 아주 다르다. 일반적으로 실리콘 고무의 투과성이 제일 크고, 그 다음으로 NR, EPDM, SBR, CR, NBR, FPM, ECO, IIR 순이다. 이러한 투과성은 같은 원료고무를 사용해도 사용 배합약품의 종류에 따라 크게 다를 수도 있다. 고무와 기체와의 메커니즘은 발포고무에 매우 중요하게 되어 이에 대한 연구$^{1-7}$는 많이 이루어졌으나 고무의 차단성에 대한 연구는 그리 많지 않다. 고무소재의 투과성 또는 차단성 기능을 주기위하여 나노복합탄성체$^8$의 기술 동향 및 코팅에 의한 기능성 향상$^{9-13}$을 하거나 열가소성탄성체 본문에서 적용하는 기술이 있는데 자동차에 사용되는 액체 및 기체 차단용 고무부품에 대하여 몇가지 소개하여 본다.