Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.3.203

Development of Fe-Mn-based Hybrid Materials Containing Nano-scale Oxides by a Powder Metallurgical Route  

Jeon, Jonggyu (School of Materials Science and Engineering, Kookmin University)
Kim, Jungjoon (School of Materials Science and Engineering, Kookmin University)
Choi, Hyunjoo (School of Materials Science and Engineering, Kookmin University)
Publication Information
Journal of Powder Materials / v.27, no.3, 2020 , pp. 203-209 More about this Journal
Abstract
The automotive industry has focused on the development of metallic materials with high specific strength, which can meet both fuel economy and safety goals. Here, a new class of ultrafine-grained high-Mn steels containing nano-scale oxides is developed using powder metallurgy. First, high-energy mechanical milling is performed to dissolve alloying elements in Fe and reduce the grain size to the nanometer regime. Second, the ball-milled powder is consolidated using spark plasma sintering. During spark plasma sintering, nanoscale manganese oxides are generated in Fe-15Mn steels, while other nanoscale oxides (e.g., aluminum, silicon, titanium) are produced in Fe-15Mn-3Al-3Si and Fe-15Mn-3Ti steels. Finally, the phases and resulting hardness of a variety of high-Mn steels are compared. As a result, the sintered pallets exhibit superior hardness when elements with higher oxygen affinity are added; these elements attract oxygen from Mn and form nanoscale oxides that can greatly improve the strength of high-Mn steels.
Keywords
Powder metallurgy; Ball milling; High-Mn steels; Mechanical Properties; Composites;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 B. De Cooman, O. Kwon and K.-G. Chin: Mater. Sci. Technol., 28 (2012) 513.   DOI
2 O. Bouaziz, S. Allain, C. P. Scott, P. Cugy and D. Barbier: Curr. Opin. Solid State Mater. Sci., 15 (2011) 141.   DOI
3 S.-J. Oh, I.-J. Shon and S.-J. Lee: J. Korean Powder Metall. Inst., 25 (2018) 126.   DOI
4 E. Bagherpour, M. Reihanian and R. Ebrahimi: Mater. Des., 36 (2012) 391.   DOI
5 S. Curtze and V.-T. Kuokkala: Acta Mater., 58 (2010) 5129.   DOI
6 M. Srinivas, G. Malakondaiah, R. W. Armstrong and P. R. Rao: Acta Metall. Mater., 39 (1991) 807.   DOI
7 A. S. Khan, B. Farrokh and L. Takacs: Mater. Sci. Eng. A, 489 (2008) 77.   DOI
8 D. Poirier, R. A. L. Drew, M. L. Trudeau and R. Gauvin: Mater. Sci. Eng. A, 527 (2010) 7605.   DOI
9 Y. D. Kim, S. Y. Song J. W. Kim and S. H. Kim: J. Korean Powder Metall. Inst., 19 (2012) 105.   DOI
10 R. Amini, A. Shamsipoor, M. Ghaffari, M. Alizadeh and A. K. Okyay: Mater. Charact., 84 (2013) 169.   DOI
11 E. Hryha and E. Dudrova: Mater. Sci. Forum, 534-536 (2007) 761.   DOI
12 K. Chang, W. Feng and L.-Q. Chen: Acta Mater., 57 (2009) 5229.   DOI
13 K. M. Rahman, V. A. Vorontsov and D. Dye: Mater. Sci. Eng. A, 589 (2014) 252.   DOI
14 L. Vanherpe, N. Moelans, B. Blanpain and S. Vandewalle: Comput. Mater. Sci., 49 (2010) 340.   DOI
15 K. M. Rahman, V. A. Vorontsov and D. Dye: Acta Mater., 89 (2015) 247.   DOI