DOI QR코드

DOI QR Code

Development of Fe-Mn-based Hybrid Materials Containing Nano-scale Oxides by a Powder Metallurgical Route

분말야금법을 활용한 나노 하이브리드 구조 철-망간계 분말야금재 제조

  • Jeon, Jonggyu (School of Materials Science and Engineering, Kookmin University) ;
  • Kim, Jungjoon (School of Materials Science and Engineering, Kookmin University) ;
  • Choi, Hyunjoo (School of Materials Science and Engineering, Kookmin University)
  • 전종규 (국민대학교 신소재공학부) ;
  • 김정준 (국민대학교 신소재공학부) ;
  • 최현주 (국민대학교 신소재공학부)
  • Received : 2020.06.10
  • Accepted : 2020.06.24
  • Published : 2020.06.28

Abstract

The automotive industry has focused on the development of metallic materials with high specific strength, which can meet both fuel economy and safety goals. Here, a new class of ultrafine-grained high-Mn steels containing nano-scale oxides is developed using powder metallurgy. First, high-energy mechanical milling is performed to dissolve alloying elements in Fe and reduce the grain size to the nanometer regime. Second, the ball-milled powder is consolidated using spark plasma sintering. During spark plasma sintering, nanoscale manganese oxides are generated in Fe-15Mn steels, while other nanoscale oxides (e.g., aluminum, silicon, titanium) are produced in Fe-15Mn-3Al-3Si and Fe-15Mn-3Ti steels. Finally, the phases and resulting hardness of a variety of high-Mn steels are compared. As a result, the sintered pallets exhibit superior hardness when elements with higher oxygen affinity are added; these elements attract oxygen from Mn and form nanoscale oxides that can greatly improve the strength of high-Mn steels.

Keywords

References

  1. B. De Cooman, O. Kwon and K.-G. Chin: Mater. Sci. Technol., 28 (2012) 513. https://doi.org/10.1179/1743284711Y.0000000095
  2. O. Bouaziz, S. Allain, C. P. Scott, P. Cugy and D. Barbier: Curr. Opin. Solid State Mater. Sci., 15 (2011) 141. https://doi.org/10.1016/j.cossms.2011.04.002
  3. S.-J. Oh, I.-J. Shon and S.-J. Lee: J. Korean Powder Metall. Inst., 25 (2018) 126. https://doi.org/10.4150/KPMI.2018.25.2.126
  4. K. M. Rahman, V. A. Vorontsov and D. Dye: Mater. Sci. Eng. A, 589 (2014) 252. https://doi.org/10.1016/j.msea.2013.09.081
  5. E. Bagherpour, M. Reihanian and R. Ebrahimi: Mater. Des., 36 (2012) 391. https://doi.org/10.1016/j.matdes.2011.11.055
  6. S. Curtze and V.-T. Kuokkala: Acta Mater., 58 (2010) 5129. https://doi.org/10.1016/j.actamat.2010.05.049
  7. M. Srinivas, G. Malakondaiah, R. W. Armstrong and P. R. Rao: Acta Metall. Mater., 39 (1991) 807. https://doi.org/10.1016/0956-7151(91)90280-E
  8. A. S. Khan, B. Farrokh and L. Takacs: Mater. Sci. Eng. A, 489 (2008) 77. https://doi.org/10.1016/j.msea.2008.01.045
  9. D. Poirier, R. A. L. Drew, M. L. Trudeau and R. Gauvin: Mater. Sci. Eng. A, 527 (2010) 7605. https://doi.org/10.1016/j.msea.2010.08.018
  10. Y. D. Kim, S. Y. Song J. W. Kim and S. H. Kim: J. Korean Powder Metall. Inst., 19 (2012) 105. https://doi.org/10.4150/KPMI.2012.19.2.105
  11. R. Amini, A. Shamsipoor, M. Ghaffari, M. Alizadeh and A. K. Okyay: Mater. Charact., 84 (2013) 169. https://doi.org/10.1016/j.matchar.2013.07.017
  12. E. Hryha and E. Dudrova: Mater. Sci. Forum, 534-536 (2007) 761. https://doi.org/10.4028/www.scientific.net/MSF.534-536.761
  13. K. Chang, W. Feng and L.-Q. Chen: Acta Mater., 57 (2009) 5229. https://doi.org/10.1016/j.actamat.2009.07.025
  14. L. Vanherpe, N. Moelans, B. Blanpain and S. Vandewalle: Comput. Mater. Sci., 49 (2010) 340. https://doi.org/10.1016/j.commatsci.2010.05.020
  15. K. M. Rahman, V. A. Vorontsov and D. Dye: Acta Mater., 89 (2015) 247. https://doi.org/10.1016/j.actamat.2015.02.008