• 제목/요약/키워드: nano beads

검색결과 50건 처리시간 0.027초

Microfluidic Immunoassay Platform Using Antibody-immobilized Glass Beads and Its Application for Detection of Escherichia coli O157:H7

  • Lee, Nae-Yoon;Yang, Yoon-sun;Kim, Youn-Sang;Park, Sung-su
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권4호
    • /
    • pp.479-483
    • /
    • 2006
  • We developed a microfluidic immunoassay platform for the detection of various analytes such as bacterial pathogen by packing antibody-immobilized glass beads in spatially-isolated microchambers on a microfluidic device. Primary amines of antibody were covalently conjugated to carboxyl-terminated glass beads previously treated with aminosilane followed by glutaraldehyde. Through this covalent binding, up to 905 $\mu$g immunoglobulin G (IgG) per gram of glass beads was immobilized. For application, glass beads attaching antibody specific to Escherichia coli O157:H7, a foodborne pathogen, were packed into a microfluidic device and used for the detection of the serotype. This prototype immunoassay device can be used for the simultaneous detection of multiple analytes by sequentially packing different-sized glass beads attaching different antibody in discrete microchambers on a single microfluidic device.

Chondrogenic Differentiation of Bone Marrow Stromal Cells in Transforming Growth $Factor-{\beta}_{1}$ Loaded Alginate Bead

  • Park, Ki-Suk;Jin Chae-Moon;Kim, Soon-Hee;Rhee John M.;Khang Gil-Son;Han, Chang-Whan;Yang, Yoon-Sun;Kim, Moon-Suk;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • 제13권4호
    • /
    • pp.285-292
    • /
    • 2005
  • We developed alginate beads loaded with transforming growth $factor-{\beta}_{1}(TGF-{\beta}_{1})$ to examine the possible application of the scaffold and cytokine carrier in tissue engineering. In this study, bone marrow stromal cells (BMSCs) and $TGF{\beta}_{1}$ were uniformly encapsulated in the alginate beads and then cultured in vitro. The cell morphology and shape of the alginate beads were observed using inverted microscope, scanning electron microscope (SEM), histological staining and RT-PCR to confirm chondrogenic differentiation. The amount of the $TGF{\beta}_{1}$ released from the $TGF-{\beta}_{1}$ loaded alginate beads was analyzed for 28 days in vitro in a phosphate buffered saline (pH 7.4) at $37^{\circ}C$. We observed the release profile of $TGF-{\beta}_{1}$ from $TGF-{\beta}_{1}$ loaded alginate beads with a sustained release pattern for 35 days. Microscopic observation showed the open cell pore structure and abundant cells with a round morphology in the alginate beads. In addition, histology and RT-PCR results revealed the evidence of chondrogenic differentiation in the beads. In conclusion, these results confirmed that $TGF-{\beta}_{1}$ loaded alginate beads provide excellent conditions for chondrogenic differentiation.

Synthesis of Nano-Sized Y3Al5O12:Ce3+ Phosphors Prepared by High Energy Beads Milling Process and Their Luminescence Properties

  • Song, Hee-Jo;Kim, Dong-Hoe;Park, Jong-Hoon;Han, Byung-Suh;Hong, Kug-Sun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.386-386
    • /
    • 2012
  • For white light emitting diode (LED) applications, it has been reported that Y3Al5O12:Ce3+ (YAG:Ce) in nano-sized phosphor performs better than it does in micro-sized particles. This is because nano-sized YAG:Ce can reduce internal light scattering when coated onto a blue LED surface. Recently, there have been many reports on the synthesis of nano-sized YAG particles using bottom-up method, such as co-precipitation method, sol-gel process, hydrothermal method, solvothermal method, and glycothermal method. However, there has been no report using top-down method. Top-down method has advantages than bottom-up method, such as large scale production and easy control of doping concentration and particle size. Therefore, in this study, nano-sized YAG:Ce phosphors were synthesized by a high energy beads milling process with varying beads size, milling time and milling steps. The beads milling process was performed by Laboratory Mill MINICER with ZrO2 beads. The phase identity and morphology of nano-sized YAG:Ce were characterized by X-ray powder diffraction (XRD) and field-emission scanning electron microscopy (FESEM), respectively. By controlling beads size, milling time and milling steps, we synthesized a size-tunable and uniform nano-sized YAG:Ce phosphors which average diameters were 100, 85 and 40 nm, respectively. After milling, there was no impurity and all of the peaks were in good agreement with YAG (JCPDS No. 33-0040). Luminescence and quantum efficiency (QE) of nano-sized YAG:Ce phosphors were measured by fluorescence spectrometer and QE measuring instrument, respectively. The synthesized YAG:Ce absorbed light efficiently in the visible region of 400-500 nm, and showed single broadband emission peaked at 550 nm with 50% of QE. As a result, by considering above results, high energy beads milling process could be a facile and reproducible synthesis method for nano-sized YAG:Ce phosphors.

  • PDF

Radiolytic Synthesis of Ag-Loaded Polystyrene(Ag-PS) Nanoparticles and Their Antimicrobial Efficiency Against Staphylococcus aureus and Klebsiella pneumoniase

  • Oh, Seong-Dae;Byun, Bok-Soo;Lee, Seung-Ho;Choi, Seong-Ho;Kim, Moon-Il;Park, Hyun-Gyu
    • Macromolecular Research
    • /
    • 제15권4호
    • /
    • pp.285-290
    • /
    • 2007
  • Ag nanoparticles were distributed onto polystyrene nanoparticle (PS-Ag) beads using two synthetic methodologies. In the first methodology, polystyrene (PS) beads were prepared via emulsion polymerization, with Ag nanoparticles subsequently loaded onto the surface of the PS beads. The polymerization of styrene was radiolytically induced in an ethanol (EtOH)/water medium, generating PS beads. Subsequently, Ag nanoparticles were loaded onto the PS beads via the reduction of Ag ions. The results from the morphological studies, using field emission transmission electron microscopy (FE-TEM), reveal the PS particles were spherical and nanosized, and the average size of the PS spherical particles decreased with increasing volume % of water in the polymerization medium. The size of the PS spherical particles increases with increasing radiation dose for the polymerization. Also, the amount of Ag nanoparticle loading could be increased by increasing the irradiation dose for the reduction of the Ag ions. In the second methodology, the polymerization of styrene and reduction of Ag ions were simultaneously performed by irradiating a solution containing styrene and Ag ions in an EtOH/water medium. Interestingly, the Ag nanoparticles were preferentially homogeneously distributed within the PS particles (not on the surface of the PS particles). Thus, Ag nanoparticles were distributed onto the surface of the PS particles using the first approach, but into the PS clusters of the particles via the second. The antimicrobial efficiency of a cloth coated with the Ag-PS composite nanoparticles was tested against bacteria, such as Staphylococcus aureus and Klebsiella pneumoniase, for 100 water washing cycles.

Growth and Migration of BALB/3T3 Fibroblast Cells on Nano-engineered Silica Beads Surface

  • Kim, Jihee;Chandra, Prakash;Yang, Jiyoon;Rhee, Seog Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3715-3721
    • /
    • 2013
  • In this study, the behavior of cells on the modified surface, and the correlation between the modified substrates and the response of cells is described. A close-packed layer of nano-sized silica beads was prepared on a coverslip, and the adhesion, proliferation, and migration of BALB/3T3 fibroblast cells on the silica layer was monitered. The 550 nm silica beads were synthesized by the hydrolysis and condensation reaction of tetraethylorthosilicate in basic solution. The amine groups were introduced onto the surfaces of silica particles by treatment with 3-aminopropyltrimethoxysilane. The close-packed layer of silica beads on the coverslip was obtained by the reaction of the amine-functionalized silica beads and the (3-triethoxysilyl)propylsuccinic anhydride treated coverslip. BALB/3T3 fibroblast cells were loaded on bare glass, APTMS coated glass, and silica bead coated glass with the same initial cell density, and the migration and proliferation of cells on the substrates was investigated. The cells were fixed and stained with antibodies in order to analyze the changes in the actin filaments and nuclei after culture on the different surfaces. The motility of cells on the silica bead coated glass was greater than that of the cells cultured on the control substrate. The growth rate of cells on the silica bead coated glass was slower than that of the control. Because the close-packed layer of silica beads gave an embossed surface, the adhesion of cells was very weak compared to the smooth surfaces. These results indicate that the adhesion of cells on the substrates is very important, and the actin filaments might play key roles in the migration and proliferation of cells. The nuclei of the cells were shrunk on the weakly adhered surfaces, and the S1 stage in which DNA is duplicated in the cell dividing processes might be retarded. As a result, the rate of proliferation of cells was decreased compared to the smooth surface of the control. In conclusion, the results described here are very important in the understanding of the interaction between implanted materials and biosystems.

나노미터 규격의 친수성 박막 패터닝을 이용한 선택적 폴리스티렌 입자 배열 (Selective Array of Polystyrene Beads by Using Nanometer-Scaled Hydrophilic Thin Film Patterning)

  • 강정화;김경섭;김남훈;노용한
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.103-104
    • /
    • 2007
  • Nanometer-scaled polymer beads, such as polystyrene beads, were used as nanometer fabrication materials due to their some advantages such as self-assembled monolayer, nanometer scaled size and excellent compatibility with silicon based devices. Thus, the investigation on these properties of polymer beads was required. It is difficult to control the array of polystyrene beads on silicon substrate. In this study, we investigated the condition of selective array of polystyrene beads on nanometer-scaled hydrophilic surface which was obtained by APS coating. A tilting method was used to array the polystyrene beads selectively on the substrate. The polystyrene beads could be arrayed selectively by this method. From these results, we verified that there are possibilities to fabricate unique tools for the nanometer-scaled electrical devices.

  • PDF

폴리스티렌 나노 비드를 이용한 플라즈모닉 나노 구조체의 광학 특성 (Optical Characteristics of Plasmonic Nano-structure Using Polystyrene Nano-beads)

  • 김두근;정병규;김홍승;김태룡;김선훈;기현철;김태언;신재철;최영완
    • 한국전기전자재료학회논문지
    • /
    • 제28권4호
    • /
    • pp.244-248
    • /
    • 2015
  • We proposed and demonstrated the double layered metallic nano-hole structure using polystyrene beads process to enhance the sensitivity of surface plasmon resonance (SPR). The double layered SPR structures are calculated using the finite-difference time-domain (FDTD) method for the width, thickness, and period of the metallic nano-hole structures. The thickness of the metal film and the metallic nano-hole is 30 and 20 nm in the 214 nm wide nano-hole size, respectively. The double layered SPR structures are fabricated with monolayer polystyrene beads of 420 nm wide. The sensitivities of the conventional SPR sensor and the double layered SPR sensor are obtained to 42.2 and 52.1 degree/RIU, respectively.

Pd 촉매금속의 표면형상 변형에 의한 고감도 MEMS 형 마이크로 수소가스 센서 제조공정 (Highly Sensitive MEMS-Type Micro Sensor for Hydrogen Gas Detection by Modifying the Surface Morphology of Pd Catalytic Metal)

  • 김정식;김범준
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.532-537
    • /
    • 2014
  • In this study, highly sensitive hydrogen micro gas sensors of the multi-layer and micro-heater type were designed and fabricated using the micro electro mechanical system (MEMS) process and palladium catalytic metal. The dimensions of the fabricated hydrogen gas sensor were about $5mm{\times}4mm$ and the sensing layer of palladium metal was deposited in the middle of the device. The sensing palladium films were modified to be nano-honeycomb and nano-hemisphere structures using an anodic aluminum oxide (AAO) template and nano-sized polystyrene beads, respectively. The sensitivities (Rs), which are the ratio of the relative resistance were significantly improved and reached levels of 0.783% and 1.045 % with 2,000 ppm H2 at $70^{\circ}C$ for nano-honeycomb and nano-hemisphere structured Pd films, respectively, on the other hand, the sensitivity was 0.638% for the plain Pd thin film. The improvement of sensitivities for the nano-honeycomb and nano-hemisphere structured Pd films with respect to the plain Pd-thin film was thought to be due to the nanoporous surface topographies of AAO and nano-sized polystyrene beads.

올리고-dT 자성입자와 측면방향 자기영동을 이용한 초고속 RNA 추출 기술 (High-Speed RNA Isolation Using Magnetic Oligo(dT) Beads and Lateral Magnetophoresis)

  • 이환용;한송이;한기호
    • 대한기계학회논문집B
    • /
    • 제35권12호
    • /
    • pp.1309-1316
    • /
    • 2011
  • 본 논문에서는 올리고-dT 자성입자와 측면방향 자기영동 기술을 기반으로 하는 초고속 RNA 추출칩을 소개한다. 센자성 와이어에 유도된 고구배자장에 의해 RNA가 결합된 올리고-dT 자성입자를 분리함으로써 용해된 혈액으로부터 고속으로 RNA를 추출하였다. 유속이 20 ml/h까지 자성입자를 80% 이상의 효율로 분리할 수 있었으며, 분리시간은 총 1분 이내였다. 추출된 시료로부터 단백질에 대한 RNA 흡광비율(absorbance ratio of RNA to protein: A260/A280)이 1.7 이상임을 확인하였고, 따라서 추출된 RNA가 매우 순수함을 보였다. 추출된 RNA를 사용하여 cDNA 합성과 PCR을 수행하였으며, 이로부터 개발된 초고속 RNA 추출칩이 적은 양의 시료만으로 간편하며 빠르고 정교한 RT-PCR을 수행하는데 실용적임을 확인하였다.

엠보싱 TiO2 박막에서 링크 형상 제어에 따른 가스 감도 변화 (Dependence of Gas Sensing Properties of Embossed TiO2 Thin Films on Links Between Hollow Hemispheres)

  • 문희규;박형호;윤석진;장호원
    • 한국전기전자재료학회논문지
    • /
    • 제25권8호
    • /
    • pp.639-645
    • /
    • 2012
  • Embossed $TiO_2$ thin films with high surface areas are achieved using soft-templates composed of monolayer polystyrene beads. The form of links between the beads in the templates is controlled by varying the $O_2$ plasma etching time on the templates, resulting in various templates with close-linked, nano-linked, and isolated beads. Room-temperature deposition of $TiO_2$ on the plasma-treated templates and calcination at $550^{\circ}C$ result in embossed films with tailored links between anatase $TiO_2$ hollow hemispheres. Although all the embossed films have similar surface areas, the sensitivity of films with nano-linked $TiO_2$ hollow hemispheres to 500 ppm CO and ethanol gases are much higher than that of films with close-linked and isolated hollow hemispheres, and the detection limits of them are as low as 0.6 ppm for CO and 0.1 ppm for ethanol. The strong correlation of sensitivity with the form of links between hollow hemispheres reveals the critical role of potential barriers formed at the links. The facile, large-scale, and on-chip fabrication of embossed $TiO_2$ films with nano-linked hollow hemispheres on Si substrate and the high sensitivity without the aid of additives give us a sustainable competitive advantage over various methods for the fabrication of highly sensitive $TiO_2$-based sensors.