DOI QR코드

DOI QR Code

High-Speed RNA Isolation Using Magnetic Oligo(dT) Beads and Lateral Magnetophoresis

올리고-dT 자성입자와 측면방향 자기영동을 이용한 초고속 RNA 추출 기술

  • Received : 2011.06.07
  • Accepted : 2011.09.20
  • Published : 2011.12.01

Abstract

This paper presents a high-speed RNA microextractor for the direct isolation of RNA from blood lysate using magnetic oligo(dT) beads. The extraction is performed through lateral magnetophoresis, which is induced by a ferromagnetic wire array inlaid. With this RNA microextractor, more than 80% of the magnetic beads could be separated at a flow rate up to 20 ml/h, and the overall extraction procedure was completed within 1 min. The absorbance ratio of RNA to protein(A260/A280) was greater than 1.7, indicating that the extraction technique yields pure RNA. The feasibility of using this technique in reverse transcription polymerase chain reaction procedures was investigated by cDNA synthesis and PCR processes. The results confirmed that the RNA microextractor is a practical device for easy, fast, and high-precision RT-PCR using minimal amounts of reagent.

본 논문에서는 올리고-dT 자성입자와 측면방향 자기영동 기술을 기반으로 하는 초고속 RNA 추출칩을 소개한다. 센자성 와이어에 유도된 고구배자장에 의해 RNA가 결합된 올리고-dT 자성입자를 분리함으로써 용해된 혈액으로부터 고속으로 RNA를 추출하였다. 유속이 20 ml/h까지 자성입자를 80% 이상의 효율로 분리할 수 있었으며, 분리시간은 총 1분 이내였다. 추출된 시료로부터 단백질에 대한 RNA 흡광비율(absorbance ratio of RNA to protein: A260/A280)이 1.7 이상임을 확인하였고, 따라서 추출된 RNA가 매우 순수함을 보였다. 추출된 RNA를 사용하여 cDNA 합성과 PCR을 수행하였으며, 이로부터 개발된 초고속 RNA 추출칩이 적은 양의 시료만으로 간편하며 빠르고 정교한 RT-PCR을 수행하는데 실용적임을 확인하였다.

Keywords

References

  1. Liao, C.-S., Lee, G.-B., Liu, H.-S., Hsieg, T.-M. and Luo, C.-H, 2005, "Miniature RT-PCR System for Diagnosis of RNA-based Viruses," Nucleic Acids Res, Vol. 33, pp. e156. https://doi.org/10.1093/nar/gni157
  2. Takano, T, Miyauchi, A., Yokozawa, T., Matsuzka, F., Liu, G., Higashiyama, T., Morita, S., Kuma, K. and Amino, N, 1998, "Accurate and Objective Preoperative Diagnosis of Thyroid Papillary Carcinomas by Reverse Transcription-PCR Detection of Oncofetal Fibronectin Messenger RNA in Fine-Needle Aspiration Biopsies," Cancer Res., Vol. 58, pp. 4913-4917.
  3. Burchill, S., Bradbury, M., Pittman, K., Southgate, J., Smith, B. and Selby, P., "Detection of Epithelial Cancer Cells in Peripheral Blood by Reverse Transcriptase-polymerase Chain Reaction," Br. J. Cancer, Vol. 71, No. 2, pp. 278-281.
  4. Setzer, M., Juusola, J. and Ballantyne, J., 2008, "Recovery and Stability of RNA in Vaginal Swabs and Blood, Semen, and Saliva Stains," J. Forensic Sci, Vol. 53, No. 2, pp. 296-305. https://doi.org/10.1111/j.1556-4029.2007.00652.x
  5. Juusola, J. and Ballantyne, J., 2003, "Messenger RNA Profiling: A prototype Method to supplant Conventional Methods for Body Fluid Identification," Forensic Sci. Int, Vol. 135, No. 2, pp. 85-96. https://doi.org/10.1016/S0379-0738(03)00197-X
  6. Han, S.-I., Han, K.-H., Frazier, A. B., Ferrance, J. P. and Landers, J. P., 2009, "An Automated Micro-solid Phase Extraction Device Involving Integrated Highpressure Microvalves for Genetic Sample Preparation," Biomed. Microdevices, Vol. 11, No. 4, pp. 935-942. https://doi.org/10.1007/s10544-009-9310-z
  7. Zhang, C. and Xing, D., 2007, "Miniaturized PCR Chips for Nucleic Acid Amplification and Analysis: Latest Advances and Future Trends," Anal. Chem, Vol. 35, No. 13, pp. 4223-4237.
  8. Wu, Q., Bienvenue, J. M., Hassan, B. J, Kwok, Y. C., Giordano, B. C., Norris, P. M., Sanders, J. P. and Ferrance, J. P, 2006, "Microchip-Based Macroporous Silica Sol−Gel Monolith for Efficient Isolation of DNA from Clinical Samples," Anal. Chem, Vol. 78, No. 16, pp. 5704-5710. https://doi.org/10.1021/ac060390t
  9. Cady, N. C., Stelick, S. and Batt, C. A., "Nucleic acid Purification Using Microfabricated Silicon Structures," Biosens. Bioelectron, Vol. 19, No. 1, pp. 59-66.
  10. Breadmore, M. C., Wolfe, K. A., Arcibal, I. G., Leung, W. K., Dickson, D., Giordano, B. C., Power, M. E., Ferrance, J. P., Feldman, S. H., Norris, P. M. and Landers, J. P., 2003, "Microchip-Based Purification of DNA from Biological Samples," Anal. Chem, Vol. 75, No. 8, pp. 1880-1886. https://doi.org/10.1021/ac0204855
  11. Wolfe, K. A., Breadmore, M. C., Ferrance, J. P., Power, M. E., Conroy, J. F., Norris, P. M. and Landers, J. P., 2002, "Toward a Microchip-Based Solid-phase Extraction Method for Isolation of Nucleic Acids," Electrophoresis, Vol. 23, No. 5, pp. 727-733. https://doi.org/10.1002/1522-2683(200203)23:5<727::AID-ELPS727>3.0.CO;2-O
  12. Hagan, K. A., Meier, W. L., Ferrance, J. P. and Landers, J. P., 2009, "Chitosan-Coated Silica as a Solid Phase for RNA Purification in a Microfluidic Device," Anal. Chem, Vol. 80, No. 13, pp. 5249-5256.
  13. Hagan, K. A., Bienvenue, J. M., Moskaluk, C. A. and Landers, J. P., 2008, "Microchip-Based Solid-Phase Purification of RNA from Biological Samples," Anal. Chem, Vol. 80, No. 22, pp. 8453-8460. https://doi.org/10.1021/ac8011945
  14. Lien, K.-Y, Lin, J.-L., Liu, C.-Y., Lei, H.-Y. and Lee, G.-B., 2007, "Purification and Enrichment of Virus Samples Utilizing Magnetic Beads on a Microfluidic System," Lab Chip, Vol. 7, No. 7, pp. 868-875. https://doi.org/10.1039/b700516d
  15. Marcus, J. S., Anderson, W. F. and Quake, S. R., 2006, "Microfluidic Single-Cell mRNA Isolation and Analysis," Anal. Chem, Vol. 78, No. 9, pp. 3084-3089. https://doi.org/10.1021/ac0519460
  16. Marcus, J. S., Anderson, W. F. and Quake, S. R., 2006, "Parallel Picoliter RT-PCR Assays Using Microfluidics," Anal. Chem, Vol. 78, No. 3, pp. 956-958. https://doi.org/10.1021/ac0513865
  17. Hong, J. W., Studer, V., Hang, G., Anderson, W. F. and Quake, S., 2004, "A Nanoliter-Scale Nucleic Acid Processor with Parallel Architecture," Nat. Biotechnol, Vol. 22, pp. 435-439. https://doi.org/10.1038/nbt951
  18. Fonnum, G., Johansson, C., Molteberg, A., Mørup. and Aksnes, E., 2005, "Quality of Cardiopulmonary Resuscitation During Out-of-Hospital Cardiac Arrest," F. Magn. Magn. Mater, Vol. 293, No. 3, pp. 41-47. https://doi.org/10.1016/j.jmmm.2005.01.041
  19. Jung, J. and Han, K.-H., "Lateral-Driven Continuous Magnetophoretic Separation of Blood Cells," Appl. Phs. Lett, Vol. 93, No. 22, pp. 223902
  20. Han, K.-H. and Frazier, A. B., 2005, "Diamagnetic Capture Mode Magnetophoretic Microseparator for Blood Cells," J. Microelectromech. Syst, Vol. 14, No. 6, pp. 1422-1431. https://doi.org/10.1109/JMEMS.2005.859097
  21. Han, K.-H. and Frazier, A. B., 2004, "Continuous Magnetophoretic Separation of Blood Cells in Microdevice Format," J. Appl. Phys, Vol. 96, pp. 5797-5802. https://doi.org/10.1063/1.1803628
  22. Lee, H., Jung, J., Han, S.-I and Han, K.-H., 2010, "High-Speed RNA Microextration Technology using Magnetic Oligo-dT Beads and Lateral Magnetophoresis," Lab on a Chip, Vol. 10, pp. 2764-2770. https://doi.org/10.1039/c005145d
  23. Pamme, N., Eijkel, J. C. T. and Manz, A., 2006, "On-Chip Free-Flow Magnetophoresis: Separation and Detection of Mixtures of Magnetic Particles in Continuous Flow," J. Magn. Magn. Mater, Vol. 307, No. 2, pp. 237-244. https://doi.org/10.1016/j.jmmm.2006.04.008
  24. Hamalainen, M. M., Eskosla, J. U., Hellman, J. and Pulkki, K., 1999, "Major Interference from Leukocytes in Reverse Transcription-PCR Identified as Neurotoxin Ribonuclease from Eosinophils: Detection of Residual Chronic Myelogenous Leukemia from Cell Lysates by Use of an Eosinophil-depleted Cell Preparation," Clin. Chem, Vol. 45, pp. 465-471.
  25. Sambrook, J. and Russell, D. W., 2001, Molecular Coloning: A Laboratory Manual, 3rd edn, Cold Spring Harbor laboratory Press, New York, Vol. 1.
  26. Bousse, L., Cohen, Nikiforov, T., Chow, A., Kopf-Sill, A. R., Dubrow, R. and Parce, J. W., 2000, "Electrokinetically Controled Microfluidic Analysis Systems," Annu. Rev. Biophys. Biomol. Struct, Vol. 29, pp. 155-181. https://doi.org/10.1146/annurev.biophys.29.1.155
  27. QIAGEN, $QIAamp^{\circledR}$ RNA Blood Mini Handbood: For Total RNA Purification from Human Whole Blood. 2nd edn, 2006.