• Title/Summary/Keyword: nano $SiO_2$

Search Result 576, Processing Time 0.031 seconds

A Study on the Durability of Thin Electric Insulation Layers Coated on Condenser Cases by Plasma Polymerization (플라즈마 중합으로 코팅된 콘덴서 케이스 전기 절연박막의 내구성에 관한 연구)

  • Kim, Kyung-Hwan;Song, Sun-Jung;Lim, Gyeong-Taek;Kim, Kyung-Seok;Li, Hui-Jie;Kim, Jong-Ho;Cho, Dong-Lyun
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.79-83
    • /
    • 2009
  • Thin electric insulation layers were coated on aluminum plates and aluminum condenser cases by plasma polymerization of HMDSO+$O_2$. Electric resistances of the films were higher than 1.0 M$\Omega$ if they are thicker than 0.5 ${\mu}m$ independently of the type of films but their surface morphologies and adhesion strengths were dependent on the process conditions. Deposition rate and adhesion strength of the films were dependent on $O_2$/HMDSO flow ratio and discharge power. The best result was obtained at $O_2$/HMDSO flow ratio of 4 and discharge power of 60 W. Adhesion strength could also be highly improved if aluminum was pre-treated in boiling water for 30 min through the formation of Al-O-Si bonding between the film and the aluminum surface. The coated films showed excellent chemical and thermal resistances.

Diameter Control of Carbon Nanotubes Using Surface Modified Fe Nano-Particle Catalysts with APS (APS로 표면 처리한 Fe 나노 입자 촉매를 이용한 CNT의 직경제어)

  • Lee, Sunwoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.478-481
    • /
    • 2013
  • Diameter controlled carbon nanotubes (CNTs) were grown using surface modified iron nano-particle catalysts with aminpropyltriethoxysilane (APS). Iron nano-particles were synthesized by thermal decomposition of iron pentacarbonyl-oleic acid complex. Subsequently, APS modification was done using the iron nano-particles synthesized. Agglomeration of the iron nano-particles during the CNT growth process was effectively prevented by the surface modification of nano-particles with the APS. APS plays as a linker material between Fe nano-particles and $SiO_2$ substrate resulting in blocking the migration of nano-particles. APS also formed siliceous material covering the iron nano-particles that prevented the agglomeration of iron nano-particles at the early stages of the CNT growth. Therefore we could obtain the diameter controlled CNTs by blocking agglomeration of the iron nano-particles.

Oxygen Sites in Quaternary Ca-Na Aluminosilicate Classes : O-17 Solid-State NMR Study (사성분계 비정질 Ca-Na 알루미노규산염의 산소주변의 원자구조 : O-17 고상핵자기 공명분광학분석)

  • Sung, So-Young;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.347-353
    • /
    • 2006
  • The atomic-nano scale structures of multi-component aluminosilicate glasses have not been well understood in spite of its implications fur dynamics and generation of magma in the natural system due to lack of suitable spectroscopic and scattering experiments. Here, we report O-17 MAS and isotropic projection of 3QMAS NMR spectra for quaternary Na-Ca silicate glasses $[(CaO)_x(Na_2O)_{1-x}]\;(A1_2O_3)_{0.5}(SiO_2)_6,\;CNAS)$ at 14.1 Tesla where atomic configurations around bridging oxygen (Si-O-Si, Si-O-Al) and non bridging oxygen (Na-O-Si, Ca-O-Si, (Na, Ca)-O-Si) are partially resolved. With increasing Na content, the fraction of Na-O-Si increases while those for bridging oxygens remain constant. The Na/Ca ratio apparently affects the peak widths of bridging oxygen peaks (e.g., Si-O-Si)) and thus the topological entropy as well as chemical shifts of the bridging oxygen peaks, implying that both BOs and NBOs are strongly interacting with network modifying cations The effect of cation field strength on the degree of Al-avoidance was also discussed.

Luminescence properties of novel Sr-Y-Si-Oxynitride yellow phosphor for LED applications (LED용 Sr-Y-Si-계 산질화물 황색 형광체의 발광 특성)

  • Jeong, Ok Geun;Park, Jong Cheon;Ryu, Jeong Ho;Cho, Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.4
    • /
    • pp.195-200
    • /
    • 2013
  • Novel Sr-Y-Si-Oxynitride yellow phosphors were synthesized and the effect of calcination temperature, reduction temperature and $Eu^{2+}$ concentration on their luminescence properties were studied. Optimal temperature conditions were found to be $1400^{\circ}C$ and $1300^{\circ}C$ for solid-state reaction and reduction, respectively. The synthesized $Ba_9Y_{2+y}Si_6O_{24-3y}N_{3y}:Eu^{2+}$ phosphors showed a single intense broadband emission in the range of 571~587 nm for 450 nm excitation light source. The highest luminescence intensity was obtained with Eu concentration of 3 mol% and concentration quenching was observed beyond 5 mol%. FE-SEM and PSA showed that the synthesized phosphors consists of particles with an average size of ${\sim}8.2{\mu}m$.

RF Integrated Electromagnetic-Noise Filters Incorporated with Nano-granular Co41Fe38AI13O8 Soft Magnetic Thin Films on Coplanar Transmission Line

  • Sohn, Jae-Cheon;Yamaguchi Masahiro;Lim, Sang-Ho;Han, Suk-Hee
    • Journal of Magnetics
    • /
    • v.10 no.4
    • /
    • pp.163-170
    • /
    • 2005
  • The RF integrated noise filters are fabricated by photolithography. The stack for the electromagnetic noise filters consists of the nano-granular ($Co_{41}Fe_{38}AI_{13}O_8$) soft magnetic film / $SiO_2$ / Cu transmission line / seed layer (Cu/Ti) / $SiO_2$-substrate. A good signal-attenuation feature along with a low signal-reflection feature is observed in the present filters. Especially in the noise filter incorporated with a $Co_{41}Fe_{38}AI_{13}O_8$ magnetic film with lateral dimensions of $2000{\mu}m$ wide, 15 mm long and $1{\mu}m$ thick, the maximum magnitude of signal attenuation reaches -55 dB, and the magnitude of signal reflection is below -10 dB in the overall frequency range. And this level of signal attenuation is much larger than that of a noise filter incorporated with a Fe magnetic film.

Advanced Low-k Materials for Cu/Low-k Chips

  • Choi, Chi-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.71-71
    • /
    • 2012
  • As the critical dimensions of integrated circuits are scaled down, the line width and spacing between the metal interconnects are made smaller. The dielectric film used as insulation between the metal lines contributes to the resistance-capacitance (RC) time constant that governs the device speed. If the RC time delay, cross talk and lowering the power dissipation are to be reduced, the intermetal dielectric (IMD) films should have a low dielectric constant. The introduction of Cu and low-k dielectrics has incrementally improved the situation as compared to the conventional $Al/SiO_2$ technology by reducing both the resistivity and the capacitance between interconnects. Some of the potential candidate materials to be used as an ILD are organic and inorganic precursors such as hydrogensilsequioxane (HSQ), silsesquioxane (SSQ), methylsilsisequioxane (MSQ) and carbon doped silicon oxide (SiOCH), It has been shown that organic functional groups can dramatically decrease dielectric constant by increasing the free volume of films. Recently, various inorganic precursors have been used to prepare the SiOCH films. The k value of the material depends on the number of $CH_3$ groups built into the structure since they lower both polarity and density of the material by steric hindrance, which the replacement of Si-O bonds with Si-$CH_3$ (methyl group) bonds causes bulk porosity due to the formation of nano-sized voids within the silicon oxide matrix. In this talk, we will be introduce some properties of SiOC(-H) thin films deposited with the dimethyldimethoxysilane (DMDMS: $C_4H_{12}O_2Si$) and oxygen as precursors by using plasma-enhanced chemical vapor deposition with and without ultraviolet (UV) irradiation.

  • PDF

Nitrogen Depth Profiles in Ultrathin Oxynitride Films

  • Shon, H.K.;Kang, H.J.;Chang, H.S.;Kim, H.K.;Moon, D.W.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.1
    • /
    • pp.5-7
    • /
    • 2002
  • For quantitative N depth profiling, N profiles were measured in a~3 m Si oxynitride by low energy O$\sub$2+/sputtering and the result was calibrated with MEIS analysis of the N thickness and areal density. The quantitative depth profile of nitrogen showed the pileup of nitrogen atoms at the interface of ultrathin oxynitride films.

  • PDF

Effects of Hot Pressing Condition on the Properties of SiCf/SiC Composites (SiCf/SiC 복합체의 특성에 미치는 열간가압소결 조건의 영향)

  • Noviyanto, Alfian;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.335-341
    • /
    • 2011
  • Continuous SiC fiber-reinforced SiC-matrix composites ($SiC_f$/SiC) had been fabricated by electrophoretic infiltration combined with ultrasonication. Nano-sized ${\beta}$-SiC added with 12 wt% of $Al_2O_3-Y_2O_3$ additive and Tyranno$^{TM}$-SA3 fabric were used as a matrix phase and fiber reinforcement, respectively. After hot pressing at 5 different conditions, the density, microstructure and mechanical properties of $SiC_f$/SiC were characterized. Hot pressing at relatively severe conditions, such as $1750^{\circ}C$ for 1 and 2 h, resulted in a brittle fracture behavior due to the strong fiber-matrix interface in spite of their high flexural strength. On the other hand, toughened $SiC_f$/SiC composite could be achieved by hot pressing at milder condition because of the formation of weak interface in spite of the decreased flexural strength. These results proposed the importance of weak fiber-matrix interface in the fabrication of ductile $SiC_f$/SiC composite.

Directed Alignment of DNA Molecule between the gold electrodes (금 전극위에 DNA 분자의 정렬에 관한 연구)

  • Hwang, Hyun Suk;Kim, Hyung Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.8
    • /
    • pp.5586-5590
    • /
    • 2015
  • In this paper, the directed alignment methode of the DNA molecule between the Au electrodes was suggested for the application of nano devices. To fabricate the nano device coated DNA, 2-Aminoethanthiol(AET) was coated on Au electrodes which was formed using photo-lithography process on $SiO_2/Si$ substrates. In general, the AET that was a positive charge with $NH^{3+}$ was strongly combined under the electrostatic interaction with DNA molecule which had to be a negative charge. The DNA molecules could be easily aligned between Au electrodes coated with AET. The structures of the DNA molecules were investigated using AFM(Atomic force microscope), they were changed from single types to bundle according to the AET concentrations.

Preparation and Field-Induced Electrical Properties of Perovskite Relaxor Ferroelectrics

  • Fan, Huiqing;Peng, Biaolin;Zhang, Qi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.1-4
    • /
    • 2015
  • (111)-oriented and random oriented $Pb_{0.8}Ba_{0.2}ZrO_3$ (PBZ) perovskite relaxor ferroelectric thin films were fabricated on Pt(111)/$TiO_x$/$SiO_2$/Si substrate by sol-gel method. Nano-scaled antiferroelectric and ferroelectric two-phase coexisted in both (111)-oriented and random oriented PBZ thin film. High dielectric tunability (${\eta}=75%$, E = 560 kV/cm) and figure-of-merit (FOM ~ 236) at room temperature was obtained in (111)-oriented thin film. Meanwhile, giant electrocaloric effect (ECE) (${\Delta}T=45.3K$ and ${\Delta}S=46.9JK^{-1}kg^{-1}$ at $598kVcm^{-1}$) at room temperature (290 K), rather than at its Curie temperature (408 K), was observed in random oriented $Pb_{0.8}Ba_{0.2}ZrO_3$ (PBZ) thin film, which makes it a promising material for the application to cooling systems near room temperature. The giant ECE as well as high dielectric tunability are attributed to the coexistence of AFE and FE phases and field-induced nano-scaled AFE to FE phase transition.