• Title/Summary/Keyword: nakdong river basin

Search Result 492, Processing Time 0.034 seconds

Drinking Water Usage with Riverbed water and Groundwater

  • Kim, Il-Bae;Lee, Soo-Sik;Choi, Yun-Yeong;Suh, Jung-Ho;Lee, Hak-Sung
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.151-154
    • /
    • 2003
  • With estmating drinking water demands of Ulsan city, the amount would be increased from 523,000ton/day in 2006 to 635,000 ton/day in 2016. Also, the dependence of Nakdong River on the Ulsan city as a source of drinking water will be very high up to 54.4% of total drinking water demands. Small-scale drinking water dam is no economical because of excessive construction cost and long construction period. However, development of riverbed and ground water of existing rivers is more economical than that of small-scale drinking water dam. In this study, to utilized Dongchun River as a drinking water resource, Modflow model was used to predict the amount of riverbed and ground water of Dongchun River basin. As a result, available amount of riverbed water was assumed in 6,000 ton/day by worst case (when perfect dry stream) and in case of ground water, it was assumed in 17,800 ton/day.

  • PDF

Sensitive analysis of river geometry under various flow conditions in South Han River using GSTARS model (GSTARS 모형을 이용한 한강 상류부에서 유량변동에 따른 하상변동 민감도 분석)

  • Ahn, Jungkyu;Lee, Jong Mun;Kim, Young Do;Kang, Boosik
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.347-359
    • /
    • 2016
  • Flow input from the basin will not remain the same as before due to climate changes. Since the predictions on river discharge due to climate change is given by scenarios, various discharge scenarios were prepared in this study. For a long term and reach prediction, semi-two dimensional sediment transport model, GSTARS, was used. The flood water surface elevations predicted by GSTARS model were analysed statistically and it was concluded that the model is applicable for the South Han River. Three stream tubes is the most suitable to simulate two dimensional river geometric change River geometric changes. For sediment load computation, Ackers and White equation and Yang equation were resonable. River will become narrower regardless of discharge variation, more discharge results in deeper channel.

Evaluation of Water Quality in the Keumho River System According to the Freshwater Fishes (담수어를 이용한 금호강수계의 수질판정)

  • 강영훈;채병수;양홍준
    • Journal of Environmental Science International
    • /
    • v.10 no.3
    • /
    • pp.225-231
    • /
    • 2001
  • The fish species collected in the Keumho River basin are 42 species 31 genera belonging to 15 Families. This report was investigated for the evaluation of water quality in the Keumho River system which is a tributary of Nakdong River in Korea on september in 1999. The fishes collected were 42 species, 31 genera belonging to 15 Families. The dominant species were 5 species; Zacco platypus, Zacco temmincki, Squalidus chankaensis tsuchigae, Moroco oxycephalus, Squalidus gracilis majimae, and 8 species; Hemibarbus longirostris, Pseudogobio esocinus, Culter brevicauda, Cobitis rotundicaudata, Pseudobagrus fulvidraco, Pungitius sinensis kaibarae, Monopterus albus, Channa argus were rare species. The relationship among the GPI, EC and BOD by the organic pollutants were over 0.9. The group pollution index(GPI) was lowest at St. 1(0.85) and highest at St. 1(0.85) and highest at St. 5(2.33). The water quality of the Keumho river divided into 3 parts; the water of upper reaches in river(St. 1) was 1st class(oligotrophic condition), middle parts(St. 2, 3, 4) were 3rd class($\alpha$-mesosaprobic condition) and lower part(St. 5) was 4th class(Polysaprobic condition) as the source of tap water, respectively. And the tributary which are the Sinryeong Stream(St. 6), the Sincheon(St. 7) and the Donghwa Stream(St. 9) in Keumho river were 2nd class as the source of tap water. The results in this study was represented same patterns as the result by the use of indicator species like as algae and invertebrates for the discrimination of water quality. So, some freshwater fish species can be use applicant for the discrimination of water quality.

  • PDF

Evaluation of Stream Water Quality to Select Target Indicators for the Management of Total Maximum Daily Loads (수질오염총량관리 대상물질 선정을 위한 하천수질 평가)

  • Park, Jun Dae;Park, Jae Hong;Oh, Seung Young;Lee, Jae Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.630-640
    • /
    • 2013
  • It is one of the most critical steps identifying impaired waterbodies exactly in the selection of target water quality indicators for the management of Total Maximum Daily Loads (TMDLs). Excess ratio and excess level were applied and analyzed by the stream zone basis in order to evaluate water impairment for Nakdong, Geum, Youngsan and Seomjin rivers. Each river basin was divided into stream zones in the light of its watershed and waterbody characteristics. Selected water quality parameters discussed in this study were pH, DO, BOD, COD, SS, T-P, T-Coli and F-Coli. The excess ratios of the water quality parameters were used to discriminate water bodies that did not meet water quality standards. The excess levels were used to classify the degradation of water quality. The excess ratios and the excess levels to the water quality criteria of the medium influence areas were used for each stream zone. The results indicate that the excess ratios and the excess levels are varied on the stream zone in each river basin. Three parameters, pH, DO and SS, met water quality standards in all stream zones. The other five parameters indicated very high excess ratios in most waterbodies, and especially T-P and T-Coli revealed to be very high excess levels in some waterbodies. These parameters could be considered as major target indicators for the management of TMDLs.

Long-term Studies on Zooplankton Community in the Hwang River Ecosystem (황강생태계 동물플랑크톤 군집의 장기변화)

  • Eui-Jeong Ko;Yu-Ji Heo;Gea-Jae Joo;Hyun-Woo Kim
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.4
    • /
    • pp.398-405
    • /
    • 2022
  • The research was based on long-term studies on the major physico-chemical and hydrological factors and zooplankton community dynamics in the Hwang River. We had 341 times survey and collected zooplankton samples in the Hwang River of mid-Nakdong River from 1995 to 2013. We identified 97 zooplankton species, including 77 rotifers, 16 cladocerans, and 4 copepods. The total zooplankton abundance and species diversity were shown distinctive temporal variation (ANOVA, p<0.001). Annual average of zooplankton population density was 58.4±3.2 ind L-1 (n=341) and the lowest was 17.0±3.8 ind L-1 (1996, n=20), while the highest was 151.5±32.3 ind L-1 (2010, n=22). For zooplankton, small rotifer groups(e.g., Keratella sp., Brachionus sp., Trichotria sp.) dominated the study site for 19 years survey. Statistical analysis revealed that there were positive relationships with SiO2 (p=0.002) and water level (p<0.001) for the high abundance of rotifer community. There were considerable variations both the total cladocerans population and the number of cladocerans' species concerning annual precipitation. Despite the appearance of various zooplankton in the Hwang River, the mean population density remained low. Due to the lateral structures in the Nakdong River, the downstream basin of the Hwang River is inevitably affected. The zooplankton community in our study site is considered to be mainly influenced by external factors that can stably increase and maintain the volume of the water body and internal factors that induce an increase in food sources through the inflow of nutrients into the water body.

Vulnerability Analysis in the Nakdong River Basin for the Utilization of Flood Risk Mapping (홍수위험지도 활용을 위한 낙동강 유역에서의 홍수취약도 분석)

  • Kim, Tae-Hyung;Han, Kun-Yeun;Cho, Wan-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.203-222
    • /
    • 2011
  • The characteristics of flood damages have been increasingly strengthened and take the form of unpredictable and unusual weather phenomena caused by climate change and climate anomalies. To prevent inundation damage caused by breach of hydraulic structure such as dam or levee, and trouble of drainage of inner basin, the prediction necessity of flood inundation area, flood risk analysis, and drawing flood risk maps have been on the rise, and the national flood risk maps have been produced. In this study, the quantitative flood vulnerability analysis was performed, which represents population living within flood-affected areas, types of economic activities, facilities affected by flood, in order to extend flood risk mapping from simple hazard concept into risk based idea. By applying it to Nakdong River basin, the flood vulnerability indices were estimated to draw flood risk maps subdivided into administrative districts. The result of this study can be applied to establish the disaster prevention measures and priority decision of disaster prevention project.

Evaluation of Hydrometeorological Components Simulated by Water and Energy Balance Analysis (물수지와 에너지수지 해석에 따른 수문기상성분 평가)

  • Ji, Hee Sook;Lee, Byong Ju;Nam, Kyung Yeub;Lee, Chul Kyu;Jung, Hyun Sook
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.1
    • /
    • pp.25-35
    • /
    • 2014
  • The objective of this study is to evaluate TOPLATS land surface model performance through comparison of results of water and energy balance analysis. The study area is selected Nakdong river basin and high resolution hydrometeorological components of which spatio-temporal resolution is 1 hr and 1 km are simulated during 2003 to 2013. The simulated daily and monthly depth of flows are well fitted with the observed one on Andong and Hapcheon dam basin. In results of diurnally analysis of energy components, change pattern throughout the day of net radiation, latent heat, sensible heat, and ground heat under energy balance analysis have higher accuracy than ones under water balance analysis at C3 and C4 sites. Especially, root mean square errors of net radiation and latent heat at C4 site are shown very low as 22.18 $W/m^2$ and 7.27 $W/m^2$, respectively. Mean soil moisture and evapotranspiration in summer and winter are simulated as 36.80%, 33.08% and 222.40 mm, 59.95 mm, respectively. From this result, when we need high resolution hydrometeorological components, energy balance analysis is more reasonable than water balance analysis. And this results will be used for monitor and forecast of weather disaster like flood and draught using spatial hydrometeorological information.

Development of Continuous Rainfall-Runoff Model for Flood Forecasting on the Large-Scale Basin (대유역 홍수예측을 위한 연속형 강우-유출모형 개발)

  • Bae, Deg-Hyo;Lee, Byong-Ju
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.1
    • /
    • pp.51-64
    • /
    • 2011
  • The objective of this study is to develop a continuous rainfall-runoff model for flood prediction on a large-scale basin. For this study, the hourly surface runoff estimation method based on the variable retention parameter and runoff curve number is developed. This model is composed that the soil moisture to continuous rainfall can be simulated with applying the hydrologic components to the continuous equation for soil moisture. The runoff can be simulated by linking the hydrologic components with the storage function model continuously. The runoff simulation to large basins can be performed by using channel storage function model. Nakdong river basin is selected as the study area. The model accuracy is evaluated at the 8 measurement sites during flood season in 2006 (calibration period) and 2007~2008 (verification period). The calibrated model simulations are well fitted to the observations. Nash and Sutcliffe model efficiencies in the calibration and verification periods exist in the range of 0.81 to 0.95 and 0.70 to 0.94, respectively. The behavior of soil moisture depending on the rainfall and the annual loadings of simulated hydrologic components are rational. From this results, continuous rainfall-runoff model developed in this study can be used to predict the discharge on large basins.

Effect of Change in Hydrological Environment by Climate Change on River Water Quality in Nam River Watershed (기후변화에 따른 남강유역의 수문환경의 변화가 하천수질에 미치는 영향)

  • Kang, Ji Yoon;Kim, Young Do;Kang, Boo Sik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.873-884
    • /
    • 2013
  • In Korea, the rainfall is concentrated in summer under the influence of monsoon climate. Thus, even a small climate change can be significant problems in water resources. As a result, a lot of attention has been focused on climate changes and a number of researches have been conducted in a manner commensurate with the attention to the climate change. This study is intended to forecast the changes in the flow and water quality of the Nam river resulting from the future climate changes in the Nam river basin using a watershed and water quality model. An SWAT model, as a watershed hydrologic model, was established after estimating a climate scenario using an artificial neural network method, and the established model was verified and adjusted using date from the Ministry of Environment to evaluate the applicability of the model. As a consequence, $R^2$ showed more than 0.7 in the simulation test, which satisfies the minimum required level. Results from the SWAT model and the future Namgang dam discharge calculated by HEC-ResSIM is used as input date for QUALKO. The results showed a huge variation in BOD depending on the annual flow of the river, which recorded a maximum difference of 2 mg/L between a rainy season and a dry season. It can be deduced that because rainfall and the runoff of a basin significantly account for the water quality of a river, higher water concentrations are recorded in a dry season in which the flow is not as much as that in a rainy season. It also can be said that water should be reserved in advance to secure water in the Nam river downstream for a dry season and be controlled in an effective and efficient manner to provide better water quality.

Monitoring of Hazardous Chemicals for Effluents of STPs and WWTP in the Nakdong River Basin (낙동강수계 주요 하·폐수처리장 방류수내 미량유해물질 모니터링)

  • Kim, Gyung-A;Seo, Chang-Dong;Lee, Sang-Won;Ryu, Dong-Choon;Kwon, Ki-Won
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1253-1268
    • /
    • 2014
  • This study was investigated twenty two hazardous chemicals compounds for effluents of nine sewage treatment plants (STPs) and one waste water treatment plant (WWTP) in the Nakdong Ri-ver Basin. They are eleven phthalates(DMP, DEP, DIBP, DBP, BEEP, DNPP, DHP, DCP, DEHP, DNOP, Dinonyl phthalate, seven aliphatic hydrocarbons(n-Tridecane, n-Tetradecane, n-Pentadecan-e, n-Hexadecane, n-Heptadecane, n-Octadecane, n-Nonadecane, Isoquinoline, 2-Chloropyridine, 2-N-itrophenol, and Benzophenone. The twenty two compounds were analyzed by gas chromatograp-hy mass spectrometry (GC/MS) with liquid-liquid extraction (LLE). Twenteen of twenty two subs-tances were detected. They were DMP, DEP, DIBP, DBP, DEHP, n-Tetradecane, n-Pentadecane, n-Heptadecane, n-Octadecane, n-Nonadecane, Isoquinoline and Benzophenone. Among these, DEHP, DEP and Benzophenone were most frequently observed. They were obtained as $ND{\sim}36.881{\mu}g/L$, $ND{\sim}0.950{\mu}g/L$, $ND{\sim}2.019{\mu}g/L$, respectively. When the substances were calculated the average concentration at 10 points, the maximum average detection concentration was investigated at the Dalseocheon STP.