DOI QR코드

DOI QR Code

Evaluation of Hydrometeorological Components Simulated by Water and Energy Balance Analysis

물수지와 에너지수지 해석에 따른 수문기상성분 평가

  • Ji, Hee Sook (Applied Meteorology Research Division, National Institute of Meteorological Research) ;
  • Lee, Byong Ju (Center of Atmospheric science & Earthquake Research) ;
  • Nam, Kyung Yeub (Applied Meteorology Research Division, National Institute of Meteorological Research) ;
  • Lee, Chul Kyu (Applied Meteorology Research Division, National Institute of Meteorological Research) ;
  • Jung, Hyun Sook (Applied Meteorology Research Division, National Institute of Meteorological Research)
  • 지희숙 (국립기상연구소 응용기상연구과 수문자원연구팀) ;
  • 이병주 (기상기술개발원) ;
  • 남경엽 (국립기상연구소 응용기상연구과) ;
  • 이철규 (국립기상연구소 응용기상연구과 수문자원연구팀) ;
  • 정현숙 (국립기상연구소 응용기상연구과)
  • Received : 2013.08.07
  • Accepted : 2013.11.11
  • Published : 2014.01.31

Abstract

The objective of this study is to evaluate TOPLATS land surface model performance through comparison of results of water and energy balance analysis. The study area is selected Nakdong river basin and high resolution hydrometeorological components of which spatio-temporal resolution is 1 hr and 1 km are simulated during 2003 to 2013. The simulated daily and monthly depth of flows are well fitted with the observed one on Andong and Hapcheon dam basin. In results of diurnally analysis of energy components, change pattern throughout the day of net radiation, latent heat, sensible heat, and ground heat under energy balance analysis have higher accuracy than ones under water balance analysis at C3 and C4 sites. Especially, root mean square errors of net radiation and latent heat at C4 site are shown very low as 22.18 $W/m^2$ and 7.27 $W/m^2$, respectively. Mean soil moisture and evapotranspiration in summer and winter are simulated as 36.80%, 33.08% and 222.40 mm, 59.95 mm, respectively. From this result, when we need high resolution hydrometeorological components, energy balance analysis is more reasonable than water balance analysis. And this results will be used for monitor and forecast of weather disaster like flood and draught using spatial hydrometeorological information.

본 연구는 TOPLATS 지표해석모형의 물수지와 에너지수지 해석에 따른 수문기상성분 비교를 통해 그 적용성을 평가하는데 목적이 있다. 대상지역은 낙동강유역을 선정하였으며 2003~2012년에 대해 1시간, 1 km의 고해상도 수문기상성분을 산출하였다. 안동댐과 합천댐유역의 관측 일/월단위 댐유입량과 모의유량 비교하여 두 유역의 모의치가 관측값과 유사함을 보였다. 또한 C3와 C4지점의 에너지성분에 대한 Diurnally 분석을 수행한 결과 에너지수지 해석에 따른 순복사량, 현열, 잠열의 일중 변화패턴이 물수지 결과에 비해 정확도가 높은 것으로 나타났다. 특히 C4지점의 순복사량과 잠열의 평균제곱근 오차는 각각 22.18 $W/m^2$와 7.27 $W/m^2$로 매우 낮게 나타났다. 여름철과 겨울철의 계절평균 토양수분과 증발산량은 각각 36.80%, 33.08%와 222.40 mm, 59.95 mm로 산정되었다. 이상의 결과로부터 고해상도의 수문기상성분 모의 시 에너지수지 해석방법을 이용하는 것이 더 합리적인 것으로 판단되며 본 연구 결과는 공간수문기상정보를 활용한 홍수 및 가뭄 등의 재해기상 감시 및 예측에 활용할 수 있을 것으로 판단된다.

Keywords

References

  1. Allen, R.G., PEREIRA, L.S., Dirk, R., and Smith, M. (1998). FAO Irrifation and Drainage Paper No. 56 Crop Evapotranspiration (guidelines for computiong crop water requriements)
  2. Betts, A., Chen, F., Mitchell, K., and Janjic, Z. (1997). "Assessment of the land surface and boundary layer models in two operational versions of the NCEP Eta model using FIFE data." Mon. Weather Rev., Vol. 125, pp. 2896-2916. https://doi.org/10.1175/1520-0493(1997)125<2896:AOTLSA>2.0.CO;2
  3. Beven, K. (1986). "Runoff production and flood frequency in catchments of order n: an alternative approach. In V.K. Gupta, I. Rodriquez-Iturbe, and E.F. Wood (Eds.)." Scale Problems in Hydrology, Reidel, Dordrecht, pp. 107-131.
  4. Beven, K., and Kirby, M.J. (1979). "A physically based, variable contributing area model of basin hydrology." Hydrological Sciences Bulletin, Vol. 24, No. 1, pp. 43-69. https://doi.org/10.1080/02626667909491834
  5. Burnash, R.J.C., Ferral, R.L., and McGuire, R.A. (1973). "A generalized streamflow simulation system: Conceptual models for digital computers." Technical Report, Joint Fed.-State River Forecast Cent., U.S. NWS and Calif. Dep. of Water Resour., Sacramento, Calif.
  6. Chen, F., Janjic, Z., and Mitchell, K. (1997). "Impact of atmospheric surface layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model." Boundary Layer Meteorology, Vol. 85, pp. 391-421. https://doi.org/10.1023/A:1000531001463
  7. Crow, W.T., Fuquin, L., and Willian, P.K. (2004). "Intercomparison of spatially distributed models for predicting surface energy flux patterns during SMACEX." Journal of Hydrometeorology, Vol. 6, pp. 941-953.
  8. Crow, W.T., Ryu, D., and Famiglietti, J.S. (2005). "Upscaling of field-scale soil moisture measurements using distributed land surface modeling." Advances in Water Resour, Vol. 28, pp. 1-14. https://doi.org/10.1016/j.advwatres.2004.10.004
  9. Ek, M.B., Mitchell, K.E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G., and Tarpley, J.D. (2003). "Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model." J. Geophys. Res., Vol. 108, No. D22, pp. 8851. https://doi.org/10.1029/2002JD003296
  10. Famiglietti, J.S., and Wood, E.F. (1994) "Application of multiscale water and energy balance models on a tallgrass prairie." Water Resour. Res., Vol. 30, No. 11, pp. 3061-3078. https://doi.org/10.1029/94WR01498
  11. Gang, J.H., and Seo, M.S. (2011). "Impacts of land surface boundary conditions on the short-range weather forecast of UM during summer season over East-Asia." Atmospheric, Korea Meteorological Society, Vol. 21, No. 4, pp. 415-427.
  12. Hong, J., Kwon, J.H., Lim, J.H., Byun, Y.H., Lee, J., and Kim, J. (2009). "Standardization of Koflux eddy-covariance data processing." Korean J. Agric. Forest Meter, Vol. 11, No. 1, pp. 19-26. https://doi.org/10.5532/KJAFM.2009.11.1.019
  13. Kim, D.E, Baek, J.J., Jung, S.W., and Choi, M.H. (2013). "Net radiation estimations using flux tower data and integrated hydrological model: For the Seolmacheon and Chungmichen Watersheds." Journal of Korea Water Resources Association, Vol. 46, No. 3, pp. 301-314. https://doi.org/10.3741/JKWRA.2013.46.3.301
  14. Kim, H.J., Jeong I.W., and Jo, M.S. (2005). "On the coupling of a land surface model to an atmospheric general circulation model." Asia-Pacific Journal of Atmospheric Sciences, Vol. 41, No. 6, pp. 1137-1149.
  15. Koster, R., and Suarez, M. (1994). "The components of a SVAT scheme and their effects on a GCM's hydrological cycle." Advances in Water Resour, Vol. 17, pp. 61-78. https://doi.org/10.1016/0309-1708(94)90024-8
  16. Koster, R., Suarez, M., and Heiser, M. (2000). "Variance and predictability of precipitation at seasonal-tointerannual timescales." J. Hydrometeorology, Vol. 1, pp. 26-46. https://doi.org/10.1175/1525-7541(2000)001<0026:VAPOPA>2.0.CO;2
  17. Lee, B.J., and Choi, Y.J. (2012). "Evaluation of highresolution hydrologic components based on TOPLATS land surface model." Atmospheric, Korea Meteorological Society, Vol. 22, No. 3, pp. 357-365.
  18. Liang, X., Lettenmaier, D.P., Wood, E.F., and Burges, S.J. (1994). "A simple hydrologically based model of land surface water and energy fluxes for GCMs." J. Geophys Res., Vol. 99, pp. 415-428.
  19. Liang, X., Wood, E.F., and Lettenmaier, D.P. (1999). "Modeling ground heat flux in land surface pameterization schemes." J. Geophys Res., Vol. 106, pp. 17,893-17,896.
  20. Lim, Y.J., Byun, K.Y., Lee, T.Y., Kwon, H., Hong, J., and Kim, J. (2012). "A land data assimilation system using the MODIS-drived land data and its application to numerical weather prediction in East Asia, Asia-Pacific." J. Atmos. Sci., Vol. 48, No. 1, pp. 83-95.
  21. Milly, P.C.D. (1986). "An event based simulation model of moisture and energy fluxes at a bare soil surface." Water Resour. Res., Vol. 22, pp. 1680-1692. https://doi.org/10.1029/WR022i012p01680
  22. National Institute of Meteorological Research. (2011). Hydrometeorology Research for the Test-bed Resion (I).
  23. Pal, A.S. (2001). Micrometeorology, Academic Press.
  24. Pauwels, V.R.N., and Wood, E.F. (1999). "A soil-vegetations-atmosphere transfer scheme for the modeling of water and energy balance processes in high latitudes 2. Application and validation." J. Geophys Res., Vol. 104, pp. 27,823-27,839. https://doi.org/10.1029/1999JD900004
  25. Pauwels, V.R.N., Wim, T., and Alexander, L. (2008). "Comparison of the estimated water and energy budgets of a large winter wheat field during AgriSAR 2006 by multple sensors and models." Journal of Hydrology, Vol. 349, pp. 425-440. https://doi.org/10.1016/j.jhydrol.2007.11.016
  26. Peters-Lidard, C.D., Pan, F., and Wood, E.F. (2001). "A re-examination of modeled and measured soil moisture spatial variability and its implications for land surface modeling." Advances in Water Resour, Vol. 24, pp. 1069-1083. https://doi.org/10.1016/S0309-1708(01)00035-5
  27. Rawls, W.J., Brakensiek, D.L., and Saxton, K.E. (1982). "Estimation of soil water properties." Trans. ASAE, Vol. 25, No. 5, pp. 1316-1320. https://doi.org/10.13031/2013.33720
  28. Rawls, W.J., Gimenez, D., and Grossman, R. (1998). "Use of soil texture, bulk density, and the slope of the water retention curve to predict saturated hydraulic conductivity." Trans. ASAE, Vol. 41, No. 4, pp. 983-988. https://doi.org/10.13031/2013.17270
  29. Sivapalan, M., Beven, K., and Wood, E.F. (1987). "On hydrologic similarity. 2. A scaled model of storm turnoff production." Water Resour. Res., Vol. 23, pp. 2266-2278. https://doi.org/10.1029/WR023i012p02266
  30. Son, K.H., Lee, J.D., and Bae, D.H. (2010). "The application assessment of global hydrologic analysis models on South Korea." Journal of Korea Water Resources Association, Vol. 43, No. 12, pp. 1063-1074. https://doi.org/10.3741/JKWRA.2010.43.12.1063
  31. Sridhar, V., Elliott, R.L., Chen, F., and Jerald, A.B. (2002). "Validation of the NOAH-OSH lnad surface model usgin surface flux measurements in Oklahoma." J. Geophys Res., Vol. 107, No. D20, pp. 4418. https://doi.org/10.1029/2001JD001306
  32. Twine, T.E., Kustas, W.P., Noman, J.M., Cook, D.R., Houser, P.R., Meyers, T.P., Prueger, J.H., Starks, P. J., and Wesely, M.L. (2000). "Correcting eddy-covariance flux underestimates over a grassland." Agricultural and Forest Meteorology, Vol. 103, No. 2000 pp. 279-300. https://doi.org/10.1016/S0168-1923(00)00123-4
  33. Wood, E.F., Lettenmaier, D.P., Liang, X., Nijssen, B., and Wetzel, S.W. (1997). "Hydrological modeling of continental-scale basins." Annu. Rev. Earth Planet. Sci., Vol. 25, pp. 279-300. https://doi.org/10.1146/annurev.earth.25.1.279
  34. Yoon, Y.N. (2007). Hydrology, CheongmunGak.

Cited by

  1. The Evaluation of TOPLATS Land Surface Model Application for Forecasting Flash Flood in mountainous areas vol.49, pp.1, 2016, https://doi.org/10.3741/JKWRA.2016.49.1.19
  2. Evaluation of Land Surface Models: Focused on Andong and Yongdam Dam Basins vol.16, pp.1, 2016, https://doi.org/10.9798/KOSHAM.2016.16.1.63