• Title/Summary/Keyword: nParticle

Search Result 1,372, Processing Time 0.043 seconds

A study on the settlement of earth dam by the changes of the density (흙댐의 밀도변화에 의한 압밀침하에 대한 연구)

  • 윤충섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.28 no.3
    • /
    • pp.89-98
    • /
    • 1986
  • This study was carried out for the settlement and camber of earth dam by the changes of the density. The testing material was taken five kinds of Soil used as banking material and it was compacted by 100, 95, 90, 85 and 80% compaction degree. The results of the settlement of earth dam whose height ranges from 10m to 50m are as follows. 1.The more the fine particle (n) increases, the higher the liquid limit (WL) and the lower the dry density (rd) becomes as follows; rd=2. 22-0. 0052n (gr/cm$_3$) rd=2. 394-0. 0164WL rd=2. 185-(5. 8n-2. 5WL)X10-$_3$ 2. The higher the optimum moisture content (Wo) becomes, the lower the density becomes as follows; rt,=2. 68-0. 028Wo rd=2. 578-0. 04Wo 3. 3.Most of the consolidation occurs immediately by loading and the more the fine particle increases, the lower the coefficient of consolidation becomes. 4.The more the fine particle increases and lower the compaction degree (D) becomes,the lower the pre-consolidation load (Pc) becomes but on the contrary the compression index (Cc) becomes higher. Those equation is as follows. Pc=3. 32-(4. 3n-3. 0D) X10-2 (kg/cm$^2$) Cc=0. 41+(1. 33n-4. 44D) X10-$^3$ 5.The more the consolidation load (P) increases, the lower the coefficient of volume change (mv) becomes with mv=ap-b, the higher the consolidation ratio (u) becomes with U= (0. 6~1. 35)PO.4 6.The more the fine particle (n) increases, the more the settlement of dam occurs with U=anb and 60-80% of the settlement occurs under construction. 7.The camber of dam has higher value in condition that has more fine particle, poorer compaction and higher height of dam. In the dam construction about twice value of table 7 is required for dam safety.

  • PDF

Particle Filtration Efficiency Testing of Sterilization Wrap Masks

  • Chau, Destiny F.;O'Shaughnessy, Patrick;Schmitz, Michael L.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.54 no.1
    • /
    • pp.31-36
    • /
    • 2021
  • Objectives: Non-traditional materials are used for mask construction to address personal protective equipment shortages during the coronavirus disease 2019 (COVID-19) pandemic. Reusable masks made from surgical sterilization wrap represent such an innovative approach with social media frequently referring to them as "N95 alternatives." This material was tested for particle filtration efficiency and breathability to clarify what role they might have in infection prevention and control. Methods: A heavyweight, double layer sterilization wrap was tested when new and after 2, 4, 6, and 10 autoclave sterilizing cycles and compared with an approved N95 respirator and a surgical mask via testing procedures using a sodium chloride aerosol for N95 efficiency testing similar to 42 CFR 84.181. Pressure testing to indicate breathability was also conducted. Results: The particle filtration efficiency for the sterilization wrap ranged between 58% to 66%, with similar performance when new and after sterilizing cycles. The N95 respirator and surgical mask performed at 95% and 68% respectively. Pressure drops for the sterilization wrap, N95 and surgical mask were 10.4 mmH2O, 5.9 mmH2O, and 5.1 mmH2O, respectively, well below the National Institute for Occupational Safety and Health limits of 35 mmH2O during initial inhalation and 25 mmH2O during initial exhalation. Conclusions: The sterilization wrap's particle filtration efficiency is much lower than a N95 respirator, but falls within the range of a surgical mask, with acceptable breathability. Performance testing of non-traditional mask materials is crucial to determine potential protection efficacy and for correcting misinterpretation propagated through popular media.

Formation Reaction of Mn-Zn Ferrite by Wet Process (습식합성에 의한 Mn-Zn Ferrite의 생성반응에 관한 연구)

  • 이경희;이병하;허원도;황우연
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.1
    • /
    • pp.25-33
    • /
    • 1993
  • Formation reaction of Mn-Zn ferrite depending on various synthetic conditions of wet process was investigated using FeCl2.nH2O(n≒4), MnCl2.4H2O, ZnCl2 as starting materials. A stable intermediate precipitate was formed by the addition of H2O2. And the precipitate was hard to transform to spinel phase of Mn-Zn Fe2O4. Single phase of Mn-Zn Fe2O4 spinel was obtained above 8$0^{\circ}C$ reaction temperature. The powder had spherical particle shape and 0.02~0.05${\mu}{\textrm}{m}$ particle size. Fe(OH)2 solid solution, -FeO(OH) solid solution, -FeOOH, Mn-Zn Fe2O4 spinel were formed with air flow rate 180$\ell$/hr. However, single phase of Mn-Zn Fe2O4 spinel with cubic particle shape and 0.1~0.2${\mu}{\textrm}{m}$ particle size was formed with synthetic conditions of 8$0^{\circ}C$ and 90 munutes. The particle shape of the -FeOOH was needle-like.

  • PDF

FRAGMENTATION PROCESSES AND STOCHASTIC SHATTERING TRANSITION

  • Jeon, In-Tae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.855-867
    • /
    • 2005
  • Shattering or disintegration of mass is a well known phenomenon in fragmentation processes first introduced by Kol­mogorov and Filippop and extensively studied by many physicists. Though the mass is conserved in each break-up, the total mass decreases in finite time. We investigate this phenomenon in the n particle system. In this system, shattering can be interpreted such that, in uniformly bounded time on n, order n of mass is located in order o(n) of clusters. It turns out that the tagged particle processes associated with the systems are useful tools to analyze the phenomenon. For the newly defined stochastic shattering based on the above ideas, we derive far sharper conditions of fragmentation kernels which guarantee the occurrence of such a phenomenon than our previous work [9].

The Adhesion of Abrasive Particle during Poly-Si, TEOS and SiN CMP (Poly-Si, TEOS, SiN 막질의 CMP 공정 중의 연마입자 오염 특성 평가.)

  • Kim, Jin-Young;Hong, Yi-Kwan;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.561-562
    • /
    • 2006
  • The purpose of this study was to investigate the root cause of adhesion of silica and ceria particles during Poly-Si, TEOS, and SiN CMP process, respectively. The zeta-potentials of abrasive particles and wafers were observed negative surface charges in the alkaline solutions. SAC and STI patterned wafers have intermediate values of their composition surface's zeta potentials. The theoretical interaction force and adhesion force of silica and ceria particle were calculated in solution with acidic, neutral and alkaline pH. A stronger attractive force was calculated for silica and ceria particles on wafers in acidic solutions than in alkaline solutions. The theoretical interaction forces of the SAC and STI patterned wafers have intermediate values of their constitution wafer's values. The adhesion forces is observed lower values in alkaline solutions than in acidic solutions. And the ceria particle has lower adhesion than that of the silica particle.

  • PDF

Simulation of Electrorheological Fluids by the Extended Maxwell-Wagner Polarization Model with Onsager Theory (Onsager 이론으로 확장한 Maxwell-Wagner 분극 모델에 의한 전기유변 현상 모사)

  • Kim, Young Dae
    • Korean Chemical Engineering Research
    • /
    • v.58 no.3
    • /
    • pp.480-485
    • /
    • 2020
  • The extended Maxwell-Wagner polarization model is employed to describe the ER behavior of the conducting particle ER suspensions, and solutions to the equation of motion are obtained by dynamic simulation. The simulation results show the nonlinear ER behavior (Δτ∝En, n≈1.5) of the conducting particle ER suspensions. The response point, where shear stress reaches steady-state, is the point where stable break-up and rebuild of the chain-like structure of particles reaches. Also, it shows the minimum of shear stress, which corresponds the start-up of random particle configuration. The shear stress reaches plateau as particle volume fraction increases.

Effect of Dispersion on Tape Casted Green Sheet Prepared from Bimodal-Type AlN Powders (Bimodal 입도분포를 보이는 AlN 분말의 테이프캐스팅 성형을 위한 분산효과)

  • Choi, Hong-Soo;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.566-571
    • /
    • 2010
  • Dispersion behavior of the slurries consisted of bimodal-type AlN powders was examined in non-aqueous solvent system. Azotropic solvent system and copolymer acidic dispersant were applied to the slurries. Measurements of the sedimentation height and the viscosity of the each slurry, and the test of particle size distribution of the each powder sample were conducted as examinations for the dispersion behavior at the various dispersant contents. The bimodal-type particle size distribution was continued after addition of the dispersant and small particle portions were increased as the dispersant content increases. The density of the green sheet was also increased as the dispersant content increases and a green density of $2.114\;g/cm^3$ was obtained at the sample prepared from 2.4 wt% dispersant content. The increase of large particle portions resulted in the surface defects of the green sheets.

Characteristic of flow pattern and Particle Suspension in a Bottom Baffled Agitated Vessel (교반조 바닥의 방해판이 유동특성 및 입자부유에 미치는 특성)

  • Lee, Young-Sei
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1549-1554
    • /
    • 2015
  • This study examined experimentally the characteristics of the flow pattern and particle suspension in an agitated vessel with a bottom baffle. A flow pattern of the particles was shown to increase the upward flow from the center of the agitated vessel bottom. The suspended particles from the experiment found that the particle suspension was promoted by the development of an Ekman boundary layer. The optimal conditions of the impeller, and the agitated vessel bottom baffle within the experimental range were as follows: Impeller, $n_p=6$, d/D=0.5, and b/d=0.3; and bottom baffle, $n_b=6$, $d_b/D=0.5$ and $b_w/D=0.05$.

Comparison of Reduction Reactivity of New Oxygen Carriers for Chemical Looping Combustion System in a Bubbling Fluidized Bed (기포유동층에서 케미컬루핑 연소시스템을 위한 신규 산소전달입자들의 환원반응성 비교)

  • KIM, HANA;LEE, DOYEON;BAE, DAL-HEE;SHUN, DOWON;BAEK, JEOM-IN;RYU, HO-JUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.5
    • /
    • pp.554-560
    • /
    • 2017
  • Reduction reactivity of new oxygen carriers for chemical looping combustion system were investigated using $CH_4$ as a reduction gas in a bubbling fluidized bed reactor and compared with that of former SDN70 oxygen carrier. New oxygen carriers showed good reduction reactivity at different $CH_4$ concentration. N018-R2 particle represented better reactivity than SDN70 at high $CH_4$ concentration. N018-R2 particle showed higher fuel conversion and $CO_2$ selectivity than those of SDN70 particle within the temperature range of $750-900^{\circ}C$. Moreover, attrition loss of N018-R2 particle was almost same with that of SDN70 particle. Consequently, we could select N018-R2 particle as the best oxygen carrier.

New Evaluation Method for The Particle Size and Morphology Via Change of Ground Particle During a Grinding Process (분쇄공정에서 변화된 입자크기 및 형상특성의 평가방법에 관한 새로운 제언)

  • Choi, Heekyu;Lee, Jehyun;Choi, Junewoo
    • Particle and aerosol research
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • New evaluation method for the particle size and morphology via change of ground particle during a grinding process was investigated. The grinding experiments were carried by a planetary ball mill. The relationship between the particle outline of the scanning electron microscopy photograph and measurement line, the measurement contact number was evaluated. The value of contact number decreased with the increase in the particle size of the ground sample, and varied with the experimental conditions. The value of contact number, which is related to the particle size of the raw sample, changed at the various experimental conditions.