• 제목/요약/키워드: n-type thin film

검색결과 432건 처리시간 0.029초

산화아연-단일벽탄소나노튜브복합체의 일산화질소 감지 특성 (NO Gas Sensing Properties of ZnO-SWCNT Composites)

  • 장동미;안세용;정혁;김도진
    • 한국재료학회지
    • /
    • 제20권11호
    • /
    • pp.623-627
    • /
    • 2010
  • Semiconducting metal oxides have been frequently used as gas sensing materials. While zinc oxide is a popular material for such applications, structures such as nanowires, nanorods and nanotubes, due to their large surface area, are natural candidates for use as gas sensors of higher sensitivity. The compound ZnO has been studied, due to its chemical and thermal stability, for use as an n-type semiconducting gas sensor. ZnO has a large exciton binding energy and a large bandgap energy at room temperature. Also, ZnO is sensitive to toxic and combustible gases. The NO gas properties of zinc oxide-single wall carbon nanotube (ZnO-SWCNT) composites were investigated. Fabrication includes the deposition of porous SWCNTs on thermally oxidized $SiO_2$ substrates followed by sputter deposition of Zn and thermal oxidation at $400^{\circ}C$ in oxygen. The Zn films were controlled to 50 nm thicknesses. The effects of microstructure and gas sensing properties were studied for process optimization through comparison of ZnO-SWCNT composites with ZnO film. The basic sensor response behavior to 10 ppm NO gas were checked at different operation temperatures in the range of $150-300^{\circ}C$. The highest sensor responses were observed at $300^{\circ}C$ in ZnO film and $250^{\circ}C$ in ZnO-SWCNT composites. The ZnO-SWCNT composite sensor showed a sensor response (~1300%) five times higher than that of pure ZnO thin film sensors at an operation temperature of $250^{\circ}C$.

펄스형 진공 아크법에 의한 ZnO 박막의 상온합성 및 이의 전기적 특성에 미치는 산소분압비의 영향 (Room-Temperature Deposition of ZnO Thin Film by Pulsed Vacuum Arc and Effect of Oxygen Gas Ratio on Its Electrical Properties)

  • 신민근;변응선;이성훈;김도근;전상조;구본흔
    • 한국표면공학회지
    • /
    • 제38권5호
    • /
    • pp.193-197
    • /
    • 2005
  • Highly c-axis oriented Zinc oxide (ZnO) films were successfully deposited at room temperature by oxygen ion-assisted pulsed filtered vacuum arc. The effect of oxygen gas ratio ($O_{2}/O_{2}+Ar$ on the preferred orientation, surface morphology and resistivity of the ZnO films were investigated. Highly crystalline ZnO films with (002) orientation were obtained at over $13\%$ of oxygen gas ratio. Increasing oxygen gas ratio up to $80\%$ was found to improve crystallinity of the films. From hall measurements, it was found that the film has n-type characteristic and carrier concentration and its mobility were closely related with oxygen gas ratio. Minimal resistivity of $3.6{\times}10^{-3}{\Omega}{\cdot}cm$ was obtained in the range of $20\%$ to $40\%$ of oxygen gas ratio.

Fabrication and Characterization of MFIS-FET using Au/SBT/LZO/Si structure

  • Im, Jong-Hyun;Lee, Gwang-Geun;Kang, Hang-Sik;Jeon, Ho-Seung;Park, Byung-Eun;Kim, Chul-Ju
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.174-174
    • /
    • 2008
  • Non-volatile memories using ferroelectric-gate field-effect transistors (Fe-FETs) with a metal/ferroelectric/semiconductor gate stack (MFS-FETs) make non-destructive read operation possible. In addition, they also have features such as high switching speed, non-volatility, radiation tolerance, and high density. However, the interface reaction between ferroelectric materials and Si substrates, i.e. generation of mobile ions and short retention, make it difficult to obtain a good ferroelectric/Si interface in an MFS-FET's gate. To overcome these difficulties, Fe-FETs with a metal/ferroelectric/insulator/semiconductor gate stack (MFIS-FETs) have been proposed, where insulator as a buffer layer is inserted between ferroelectric materials and Si substrates. We prepared $SrBi_2Ta_2O_9$ (SBT) film as a ferroelectric layer and $LaZrO_x$ (LZO) film as a buffer layer on p-type (100) silicon wafer for making the MFIS-FET devices. For definition of source and drain region, phosphosilicate glass (PSG) thin film was used as a doping source of phosphorus (P). Ultimately, the n-channel ferroelectric-gate FET using the SBT/LZO/Si Structure is fabricated. To examine the ferroelectric effect of the fabricated Fe-FETs, drain current ($I_d$) versus gate voltage ($V_g$) characteristics in logarithmic scale was measured. Also, drain current ($I_d$) versus drain voltage ($V_d$) characteristics of the fabricated SBT/LZO/Si MFIS-FETs was measured according to the gate voltage variation.

  • PDF

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • 오상호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

사각 나선형 박막 인덕터의 GHz 대역 특성 (GHz Bandwidth Characteristics of Rectangular Spiral type Thin Film Inductors)

  • 김지원;조순철
    • 한국자기학회지
    • /
    • 제14권1호
    • /
    • pp.52-57
    • /
    • 2004
  • 본 연구에서는 ㎓ 대역의 박막 인덕터 특성을 수치해석 하였다. 인덕터의 기본 구조는 390$\mu\textrm{m}$${\times}$390$\mu\textrm{m}$, 5.5턴(turn), 선폭 10$\mu\textrm{m}$와 선간격 10$\mu\textrm{m}$의 사각 나선형이다. 주파수 특성은 10 ㎓까지 시뮬레이션 하였다. 기판은 Si, Sapphire, 유리와 GaAs를 모델로 하였고 도체는 Cu이다. 도체의 두께는 2$\mu\textrm{m}$로 고정하였다. 입력과 출력단자의 위치가 서로 반대가 되도록 하기 위하여 턴수는 n.5로 하였다. 기본 구조 인덕터는 초기 인덕턴스 13.0 nH,최대 인덕턴스 60.0 nH 그리고 공진주파수는 4.25 ㎓이었다. 기판의 유전상수가 증가하면 초기 인덕스는 거의 변화가 없으나 공진 주파수는 감소하였다. 인덕터의 턴수를 1.5에서 9.5로 변화시키면, 초기 인덕턴스는 2.9 nH며 16.9 nH로 포화되었으며 Q factor는 소폭 증가하였다. 인덕터의 선폭과 선간격을 증가시키면 초기와 최대 인덕턴스는 감소하였다. 공진 주파수는 증가하였으며, Q factor는 선폭과 선간격을 증가시키면 각각 증가와 감소를 나타내었다.

수소 도핑효과에 의한 ZnO 맴트랜지스터 소자특성 (Resistive Switching Characteristic of ZnO Memtransistor Device by a Proton Doping Effect)

  • 손기훈;강경문;박형호;이홍섭
    • 마이크로전자및패키징학회지
    • /
    • 제27권1호
    • /
    • pp.31-35
    • /
    • 2020
  • 원자층 증착법(ALD: atomic layer deposition)으로 성장된 ZnO n-type 산화물반도체를 이용하여 three terminal memristor (memtransistor) 소자를 제작하여 습도에 따른 그 특성을 관찰하였다. 40 nm 두께의 ZnO 박막을 이용하여 channel width 70 ㎛, length 5 ㎛, back gate 구조의 memtransistor 소자를 제작하여 습도에 (40%, 50%, 60%, 70%) 따른 gate tunable memristive 특성변화를 관찰하였다. 습도가 높아질수록 electron mobility와 gate controllability가 감소하여 수소도핑효과에 의한 carrier 농도가 증가하는 거동의 output curve가 관찰되었다. 60%, 70%의 습도에서 memristive 거동이 관찰되었으며 습도가 높아질수록 on/off ratio는 증가하는 반면 gate controllability가 감소하였다. 60% 습도에서 가장 우수한 특성의 gate tunable memristive 특성을 얻을 수 있었다.

Electrodeposition of Silicon in Ionic Liquid of [bmpy]$Tf_2N$

  • 박제식;이철경
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • Silicon is one of useful materials in various industry such as semiconductor, solar cell, and secondary battery. The metallic silicon produces generally melting process for ingot type or chemical vapor deposition (CVD) for thin film type. However, these methods have disadvantages of high cost, complicated process, and consumption of much energy. Electrodeposition has been known as a powerful synthesis method for obtaining metallic species by relatively simple operation with current and voltage control. Unfortunately, the electrodeposition of the silicon is impossible in aqueous electrolyte solution due to its low oxidation-reduction equilibrium potential. Ionic liquids are simply defined as ionic melts with a melting point below $100^{\circ}C$. Characteristics of the ionic liquids are high ionic conductivities, low vapour pressures, chemical stability, and wide electrochemical windows. The ionic liquids enable the electrochemically active elements, such as silicon, titanium, and aluminum, to be reduced to their metallic states without vigorous hydrogen gas evolution. In this study, the electrodeposion of silicon has been investigated in ionic liquid of 1-butyl-3-methylpyrolidinium bis (trifluoromethylsulfonyl) imide ([bmpy]$Tf_2N$) saturated with $SiCl_4$ at room temperature. Also, the effect of electrode materials on the electrodeposition and morphological characteristics of the silicon electrodeposited were analyzed The silicon electrodeposited on gold substrate was composed of the metallic Si with single crystalline size between 100~200nm. The silicon content by XPS analysis was detected in 31.3 wt% and the others were oxygen, gold, and carbon. The oxygen was detected much in edge area of th electrode due to $SiO_2$ from a partial oxidation of the metallic Si.

  • PDF

Grooved $SiO_2$ 박막을 갖는 Mach-Zehnder Ti:$LiNbO_3$ 광변조기의 진행파형 CPW 전극설계 (Design of Traveling-Wave Type CPW Electrodes in a Mach-Zehnder Ti:$LiNbO_3$ Optical Modulator with a Grooved $SiO_2$ thin Film)

  • 한영탁;김창민;윤형도;임상규;안철;구경환
    • 대한전자공학회논문지SD
    • /
    • 제37권11호
    • /
    • pp.50-58
    • /
    • 2000
  • Goodved $SiO_2$ 박막을 갖는 Mach-Zehnder(M-Z)형태의 $Ti:LiNbO_3$ 진행파 광변조기의 전극구조를 변화시켜가며 유한요소법에 의한 해석을 수행하였다. 최적의 설계치를 추출하였으며, 제작된 전극에 대하여 특성임피던스($Z_o$), 마이크로파 유효굴절률($N_{eff}$), 감쇠정수($a_o$)를 측정하여 그 결과를 이론치와 비교하였다. 전극두께가 11${\mu}m$이고, $SiO_2$ 완중박막을 식각한 전극에 대하여, RF 측정결과로부터 계산된 3dB 변조대역폭은 18GHz로 나타났다.

  • PDF

코로나 극성배향이 비선형 고분자박막의 복소굴절율에 미치는 영향 및 배향효과의 정량화 (Refractive index change of nonlinear polymer thin films induced by corona poling and quantitative evaluation of poling effect)

  • 길현옥;김상준;방현용;김상열
    • 한국광학회지
    • /
    • 제10권3호
    • /
    • pp.181-187
    • /
    • 1999
  • 대표적인 이차 비선형 광학 물질인 곁가지형 NPP(N-(4-nitrophenyI)-(L)-prolinol) 고분자 박막을 스핀코팅으로 제작하였다. 위상변조방식의 분광타원해석기를 사용하여 코로나 특성배향법으로 온도와 전기장을 변화시켜가며 실시간으로 타원해석 스펙트럼을 측정하였다. 광투과영역에서의 타원해석상수를 모델링분석하여 박막의 두께를 구하였고, 광합수영역에서는 타원해석상수의 역방계산을 통해 굴절율과 소광계수를 구하였다. 분광광도계를 사용하여 배향 전후 각각의 상태에 따른 광 투과율 스펙트럼을 측정한 후 이를 되먹임 관계식에 적용하여 구한 소광계수가 분광타원해석법으로 결정한 결과와 일치함을 확인하였다. 또한 두께가 비교적 얇은 시료의 타원해석 스펙트럼을 코로나배향 전후에 걸쳐 분석한 후 시료 면에 수직한 수직 복소굴절율과 시료 면에 평행한 수평 복소굴절율을 각각 결정하였다. 이 수직과 복소굴절율을 기준데이터로 사용하고 모델링 과정을 적용하여 배향의 각 단계별로 유효 수직조성비를 결정하여 두꺼운 고분자 박막의 배향된 정도를 정량화하는 분석모델을 제시하였다.

  • PDF

RF-magnetron sputtering 방법으로 성장시킨 Ga-doped ZnO 박막의 성장 온도 변화에 따른 영향

  • 김영이;우창호;안철현;배영숙;공보현;김동찬;조형균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.9-9
    • /
    • 2009
  • 1 wt % Ga-dope ZnO (ZnO:Ga) thin films with n-type semiconducting behavior were grown on c-sapphire substrates by radio frequency magnetron sputtering at various growth temperatures. The room temperature grown ZnO:Ga film showed the faint preferred orientation behavior along the c-axis with small domain size and high density of stacking faults, despite limited surface diffusion of the deposited atoms. The increase in the growth temperature in the range between $300\sim550^{\circ}C$ led to the granular shape of epitaxial ZnO:Ga films due to not enough thermal energy and large lattice mismatch. The growth temperature above $550^{\circ}C$ induced the quite flat surface and the simultaneous improvement of electrical carrier concentration and carrier mobility, $6.3\;\times\;10^{18}/cm^3$ and $27\;cm^2/Vs$, respectively. In addition, the increase in the grain size and the decrease in the dislocation density were observed in the high temperature grown films. The low-temperature photoluminescence of the ZnO:Ga films grown below $450^{\circ}C$ showed the redshift of deep-level emission, which was due to the transition from $Zn_j$ to $O_i$ level.

  • PDF