• Title/Summary/Keyword: n-propanol+acetic acid

Search Result 16, Processing Time 0.022 seconds

The Measurement and Estimation of Lower Flash Points for n-Propanol+Acetic acid and n-Propanol+n-Propionic Systems (n-Propanol+acetic acid 및 n-propanol+n-propionic acid 계의 하부 인하점 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.4
    • /
    • pp.37-42
    • /
    • 2007
  • Flash points for the flammable binary systems, n-propanol+acetic acid and n-propanol+n-propionic acid, were measured by Cleveland open cup tester. The Raoult's law, the van Laar equation and the UNIQUAC equation were used for predicting flash points and were compared with experimentally-derived data. The calculated values based on the van Laar and UNIQUAC equations were found to be better than those based on the Raoult's law. And the predictive curve of the flash point prediction model based on the UNIQUAC equation described the experimentally-derived data more effectively than was the case when the prediction model was based upon the the van Laar equation.

Measurement and Prediction of Autoignition Temperature(AIT) of n-Propanol and Acetic acid System (노말프로판올과 아세틱에씨드 계의 최소자연발화온도(AIT) 측정 및 예측)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.66-71
    • /
    • 2017
  • The autoignition temperature (AIT) is crucial combustible characteristics which need attention in chemical process that handle hazardous materials. The AIT, also to as minimum spontaneous ignition temperature(MSIT), is the lowest temperature of a hot surface at which the substance will spontaneously ignite without any obvious sources of ignition such as a spark or flame. The AIT may be used as combustion property to specify operating, storage, and materials handling procedures for process safety. This study measured the AITs of n-propanol+acetic acid system from ignition delay time(time lag) by using ASTM E659 apparatus. The AITs of n-propanol and acetic acid which constituted binary system were $435^{\circ}C$ and $212^{\circ}C$, respectively. The experimental AITs of n-propanol+acetic acid system were a good agreement with the calculated AITs by the proposed equations with a few A.A.D.(average absolute deviation). In the case of n-propanol and acetic acid system, the minimum autoignition temperature behavior (MAITB), which is lower than the lower AIT, is shown among the two pure substances constituting the mixture.

The Measurement and Estimation of Lower Flash Point for 2-Propanol+Acid Systems Using Cleveland Open Cup Apparatus (클리브랜드 개방식 장치를 이용한 2-propanol+acid류 계의 하부 인화점 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Fire Science and Engineering
    • /
    • v.21 no.4
    • /
    • pp.32-37
    • /
    • 2007
  • An accurate knowledge of the flash point is important in developing appropriate preventive and control measures in industrial fire protection. The lower flash points for the 2-propanol+acetic acid and 2-propanol+-n-propionic acid systems were measured by Cleveland open cup apparatus. The experimental data were compared with the values calculated by the Raoult's law, the Wilson equation and the NRTL(non random two liquids) equation. The calculated values based on the Wilson and NRTL equations were found to be better than those based on the Raoult's law. And the predictive curve of the flash point prediction model, based on NRTL equation described the experimentally-derived data were more effective than the case of the Wilson equation.

The Measurement of Lower Flash Points For Binary Mixtures (이성분계 혼합물의 하부인화점 측정)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.1
    • /
    • pp.35-39
    • /
    • 2013
  • The flash point is an important indicator of the flammability of a chemical. In this study, the flash points for the n-propanol+n-butanol and n-propanol+acetic acid systems were measured by Tag open-cup apparatus. The experimental data were compared with the values calculated by the Raoult's law and optimization method based on van Laar and UNIQUAC equations. The calculated values by optimization method were found to be better than those based on the Raoult's law.

Study on the confirmation of drinking at the bloods & urines used 5-hydroxyindole-3-acetic acid and 5-hydroxytryptophol (5-Hydroxyindole-3-acetic acid와 5-hydroxytryptophol을 이용한 혈액 및 뇨에서 음주여부 확인에 관한 연구)

  • Kim, Myung-Duck;Kim, Young-Woon;Kwon, O-Sung;Park, Se-Youn;Kim, Eun-Ho
    • Analytical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.204-212
    • /
    • 2007
  • The study was carried out to investigate the ratio of ethanol to n-propanol in blood and urine specimens, and developed a method for distinguishing ingested ethanol from artifactual ethanol in urine samples. In case of no urinary ethanol was detected, the ratio of ethanol to n-propanol concentration was about 12~20 times higher than those of blood. Therefore, it might be a good method to determine whether the detected ethanol is from drinking or from microbial fermentation. During the metabolism of ethanol, the levels of the metabolite of serotonin (5-hydroxytryptamine, 5-HT) and 5-hydroxyindole-3-acetic acid (5-HIAA) were decreased, while 5-hydroxytryptophol (5-HTOL) was increased. The levels of 5-HTOL/5-HIAA in urine samples of drinking suspects were greater than 1, in that of no drinking suspects were less than 1.

Change in Flavor Components of Black-fermented Garlic Wine according to the Type of Chips during the Manufacturing Process (흑마늘와인 제조과정 중 숙성칩의 종류에 따른 향기성분 변화)

  • Kim, Gyeong-Hwan;Kim, Jin-Hee;Yang, Ji-Young
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.1
    • /
    • pp.73-77
    • /
    • 2014
  • Black fermented garlic includes many pharmacological components. Therefore, in this study, black fermented garlic wine was manufactured and its flavor compounds were investigated difference of aging chips from America and France. The fermented wine was stored at $10^{\circ}C$ for 6 months. GC/MS was used for the flavor components analysis. Wine using American chip contained 2-methyl-1-propanol, 3-methyl-1-butanol, 2-methyl-1-butanol, acetaldehyde, butanoic acid, octanoic acid, 1,1-diethoxyethane, and allyl methyl sulfide. 1-Propanol, 2-methyl-1-propanol, 3-methyl-1-butanol, acetaldehyde, acetic acid, propanoic acid, butanoic acid, octanoic acid, 2-heptanone, 1,1-diethoxyethane, N-amino32-hydroxypropanamidate, n-butylamine, and chloroacetonitrile were detected as major flavor compounds using France chips. Especially, the wine contained allyl methyl sulfide that was resulted from black fermented garlic. There were more compounds that smell like fruit in the wine using American chips relatively. And allyl methyl sulfide was detected only in the wine using America chips. Whereas acetic acid was detected only in the wine using France chips.

Flash Points of the Binary Solutions Using Cleveland Open Cup Tester (클리브랜드 개방식 장치를 이용한 2성분계의 인화점)

  • Ha, Dong-Myeong;Lee, Sung-Jin
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.57-62
    • /
    • 2011
  • The flash point is one of the most significant combustion properties of flammable liquids in industrial processes when evaluation process safety, In this paper, Cleveland open cup tester is used to measure the flash points for the two binary systems (n-propanol + formic acid and acetic acid + propionic acid). The measured flash points were compared with the values calculated by the Raoult's law and the optimization method using van Laar and Wilson equations. The calculated values based on the optimization method were found to be better than those based on the Raoult's law.

Determination of Dissociation Constant of Hydrogen Cupferrate in Methanol-Water and 2-Propanol-Water Solution (Methanol-물 및 2-Propanol-물의 混合溶媒에서의 Hydrogen Cupferrate의 酸解離常數의 決定)

  • Si-Joong Kim;Chang-Ju Yoon;In-Soon Chang
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.3
    • /
    • pp.119-128
    • /
    • 1966
  • The glass electrode was empirically calibrated in methanol-and 2-propanol-water mixed solvents, by means of which the pH-meter reading could be converted to stoichiometric hydrogen ion concentration. The thermodynamic dissociation constants of hydrogen cupferrate in methanol-and 2-propanol-water solution were potentiometrically determined with the changes in composition of organic solvents at 0.01 and 0.05 of the ionic strength and 25$^{\circ}C$. The empirical formula of the constants with mole fraction (n) of the organic solvent are as follow: methanol-water solution $pK_a$= 2.24n + 4.29 at ${\mu}$ = 0.01 n = 0.0476∼0.642 $pK_a$ = 2.35n + 4.38 at ${\mu}$ = 0.05 n= 0.0446~0.642 2-propanol-water solution $pK_a$= 5.50n + 4.48 at ${\mu}$ = 0.05 n = 0.0253~0.259 The relationships between $pK_a$ of acetic acid, propionic acid and HCup and dielectric constant of some mixed solvents were discussed. It would be considered that the factors effecting $pK_a$ value of weak acid in mixed-solvent are not only dielectric constants but acid-base character and solvation effect of the solvent, etc.

  • PDF

Isolation and Characterization of Acetobacter Species from a Traditionally Prepared Vinegar (전통방식으로제조한식초로부터 Acetobacter 종들분리및특성조사)

  • Lee, Kang Wook;Shim, Jae Min;Kim, Gyeong Min;Shin, Jung-Hye;Kim, Jeong Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.219-226
    • /
    • 2015
  • Acetic acid bacteria (AAB) were isolated from vinegar fermented through traditional methods in Namhae county, Gyeongnam, the Republic of Korea. The isolated strains were Gram negative, non-motile, and short-rods. Three selected strains were identified as either Acetobacter pasteurianus or Acetobacter aceti by 16S rRNA gene sequencing. A. pasteurianus NH2 and A. pasteurianus NH6 utilized ethanol, glycerol, D-fructose, D-glucose, D-mannitol, D-sorbitol, L-glutamic acid and Na-acetate. A. aceti NH12 utilized ethanol, n-propanol, glycerol, D-mannitol and Na-acetate. These strains grew best at 30℃ and an initial pH of 3.4. They were tolerant against acetic acid at up to 3% of initial concentration (v/v). The optimum conditions for acetic acid production were 30℃ and pH 3.4, with an initial ethanol concentration of 5%, resulting in an acetic acid concentration of 7.3−7.7%.

A Study on Wine-Making with Dried Persimmon Produced in Korea (곶감주 개발에 관한 연구)

  • Woo, Kang-Lyung;Lee, Su-Hak
    • Korean Journal of Food Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.204-212
    • /
    • 1994
  • To estimate the possibility of wine-making with Korean dried persimmon, its homogenized and filtered solution was fermented at $15^{\circ}C$ and $25^{\circ}C$ for 12 weeks with Saccharomyces cerevisiae (Japan Alcoholic Beverage Association N0.7). Sugars of dried persimmon were mainly composed of 27.02% of glucose, 19.81% of fructose and 5.12% of mannose. In the fermentation at $25^{\circ}C$, glucose was almost completely consumed in 8 days, but fructose and mannose were consumed up to 64% and 74%, respectively, in the same period and were not utilized any more afterwards. In the fermentation at $15^{\circ}C$, 75% of glucose, 20% of fructose and 49% of mannose were consumed in 8 days and these sugars were continuously utilized for 12 weeks. Organic acids in the homogenized and filtered solution were levulinic acid (148.6 mg%), 4-methylvaleric acid (73.5 mg%), oxalic acid (28.7 mg%), acetic acid (8.5 mg%), N-butyric acid (8.4 mg%) and succinic acid (6.7 mg%). Irrespective of fermentation temperature, levulinic acid rapidly reduced according to progression of fermentation. Oxalic acid, N-butyric acid and succinic acid decreased at 2nd day of fermentation, and then increased at 4th and 6th days and subsequently decreased again under the levels of the solution. Acetic acid and 4-methylvaleric acid increased with the proceeding of fermentation and at 12th week of fermentation these contents were more than those of the solution. The contents of total free amino acid significantly reduced at 2th day of fermentation and then increased to the level of the solution at 12th week irrespective of fermentation temperature. Ethanol content rapidly increased to the levels of 5.3(v/v) at $15^{\circ}C$ and 9.4%(v/v) at $25^{\circ}C$ to 8th day after fermentation, but at 12th week its content was 14.5%(v/v) at $15^{\circ}C$ and 9.4%(v/v) at $25^{\circ}C$. The higher alcohots identified were 2-methyl-l-propanol, 3-methyl-ibutanol, 2-methyl-l-butanol and 2-methyl-2-propanol and the range of those contents was from 0.001% (v/v) to 0.06%(v/v). The color of the wine fermented at $15^{\circ}C$ was slightly superior but flavor and taste were slightly superior in the wine fermented at $25^{\circ}C$.

  • PDF