• Title/Summary/Keyword: n-butyl acetate

Search Result 63, Processing Time 0.019 seconds

Antioxidant Effects of Solvent Fraction from Sanguisorbae officinalis L. with Acetone (오이풀 아세톤 추출물을 이용한 용매 분획물의 항산화 효과)

  • Kim, Hui-Yeong;Yeo, Shin-Il;Lee, Jin-Tae
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.2
    • /
    • pp.89-93
    • /
    • 2011
  • The solvent extracts of Sanguisorbae officinalis L. were investigated for the activities of antioxidants as a functional ingredient for cosmetic products. The electron donating effect of ethyl acetate layer and n-butyl alcohol layer was appeared similar activity with positive control butylated hydroxy anisole (BHA) at all concentrations. In addition, in 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical scavenging assay, ethyl acetate layer, n-butyl alcohol layer and water layer were over 99% effect at all concentrations and higher than that of BHA. Also in hydrogen peroxide scavenging assay, ethyl acetate layer and n-butyl alcohol layer were higher than that of positive control ascorbic acid. The measured superoxide dismutase (SOD)-like activity of n-butyl alcohol was more than 50% at concentration of 1,000 ${\mu}g/mL$ and superoxide anion radical scavenging ability showed more than 45% at 1,000 ${\mu}g/mL$ of n-butyl alcohol layer. All these findings suggested that ethyl acetate layer and n-butyl alcohol layer have a great potential as a cosmeceutical ingredient with an antioxidant effect.

Effective Interfacial Area in an Agitated Liquid-Liquid Contactor by a Chemical Method (화학방법에 의한 액-액 계면 면적)

  • Park, Sang-Wook;Moon, Jin-Bok;Shin, Jeung-Ho;Park, Dae-Won;Kim, Jong-Hyeon
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.103-112
    • /
    • 1993
  • The rates of overall mass transfer of n-butyl acetate in the alkaline hydrolysis of n-butyl acetate were measured by using a mechanically agitated vessel in order to get the relationship between the mass transfer rates and experimental variables. The interfacial area between liquid-liquid heterogeneous phases could be obtained by comparing the theoretical values of reaction enhancement factor from an approximated solution of a diffusion equation based on the film theory with the experimental data.

  • PDF

Alkaline Hydrolysis of Esters across the Heterogeneous Liquid-Liquid Interface (불균일계 액-액 접촉 계면을 통한 ester의 알카리 가수분해 반응)

  • Park, Sang-Wook;Moon, Jin-Bok;Ko, Myung-Sook;Kim, Gun-Woo
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.119-129
    • /
    • 1992
  • The rates of mass transfer with the alkaline hydrolysis of ethyl acetate and n-butyl acetate were measured by using a modified Lewis cell. The rates of mass transfer with chemical reaction were independent of the speed of agitation, and the reaction enhancement factors were independent of the ionic strength. The second order reaction rate constants of ethyl acetate and n-butyl acetate could be obtained from an approximate solution of a diffusion equation by film theory, and their values were $0.041m^3/kg\;mol{\cdot}s$ and $0.338m^3/kgmol{\cdot}s$, respectively.

  • PDF

Study of Supercritical Carbon Dioxide/n-Butyl Acetate Co-solvent System with High Selectivity in Photoresist Removal Process (포토레지스트 공정에서 높은 선택성을 가지는 초임계 이산화탄소/n-butyl acetate 공용매 시스템 연구)

  • Kim, Dong Woo;Heo, Hoon;Lim, Kwon Teak
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.357-363
    • /
    • 2017
  • In this study, the supercritical carbon dioxide ($scCO_2$)/ n-butyl acetate (n-BA) co-solvent system was employed to remove an unexposed negative photoresist (PR) from the surface of a silicon wafer. In addition, the selectivity of the $scCO_2$/n-BA co-solvent system was confirmed for the unexposed and exposed negative PR. Optimum conditions for removal of the unexposed PR were obtained from various conditions such as pressure, temperature and n-BA ratio. The n-BA was highly soluble in $scCO_2$ without cloud point and phase separation in mostly experimental conditions. However, the $scCO_2$/n-BA co-solvent was phase separated at 100 bar, above $80^{\circ}C$. The unexposed and exposed PR was swelled in $scCO_2$ solvent at all experimental conditions. The complete removal of unexposed PR was achieved from the reaction condition of 160 bar, 10 min, $40^{\circ}C$ and 75 wt% n-BA in $scCO_2$, as measured by ellipsometry. The exposed photoresist showed high stability in the $scCO_2$/n-BA co-solvent system, which indicated that the $scCO_2$/n-BA co-solvent system has high selectivity for the PR removal in photo lithograph process. The $scCO_2$/n-BA co-solvent system not only prevent swelling of exposed PR, but also provide efficient and powful performance to removal unexposed PR.

Lipase-catalyzed Transesterification in Several Reaction Systems: An Application of Room Temperature Ionic Liquids for Bi-phasic Production of n-Butyl Acetate

  • Park Suk-Chan;Chang Woo-Jin;Lee Sang-Mok;Kim Young-Jun;Koo Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.1
    • /
    • pp.99-102
    • /
    • 2005
  • Organic solvents are widely used in biotransformation systems. There are many efforts to reduce the consumption of organic solvents because of their toxicity to the environment and human health. In recent years, several groups have started to explore novel organic solvents called room temperature ionic liquids in order to substitute conventional organic solvents. In this work, lipase-catalyzed transesterification in several uni- and bi-phasic systems was studied. Two representative hydrophobic ionic liquids based on 1-butyl-3-methylimidazolum coupled with hexafluorophosphate ([BMIM][$PF_6$]) and bis[{trifluoromethylsulfonyl} imide] ([BMIM] [$Tf_{2}N$]) were employed as reaction media for the transesterification of n-butanol. The commercial lipase, Novozym 435, was used for the transesterification reaction with vinyl acetate as an acyl donor. The conversion yield was increased around $10\%$ in a water/[BMIM][$Tf_{2}N$] bi-phasic system compared with that in a water/hexane system. A higher distribution of substrates into the water phase is believed to enhance the conversion yield in a water/[BMIM][$Tf_{2}N$] system. Partition coefficients of the substrates in the water/[BMIM][$Tf_{2}N$] bi-phasic system were higher than three times that found in the water/hexane system, while n-butyl acetate showed a similar distribution in both systems. Thus, RTILs appear to be a promising substitute of organic solvents in some biotransformation systems.

Characteristics of Isothermal Analysis and Emulsion Copolymerization of Vinyl Acetate/Alkyl Acrylate (비닐아세테이트/알킬아크릴레이트계 에멀젼 공중합과 등온 열분해 특성)

  • Cho, Dae-Hoon;Choe, Sung-Il;Seul, Soo-Duk
    • Journal of Adhesion and Interface
    • /
    • v.13 no.2
    • /
    • pp.64-72
    • /
    • 2012
  • Vinyl acetate/alkyl acrylate copolymers were prepared by water-born emulsion copolymerization according to the compositional change of vinyl acetate and various alkyl acrylates such as methyl acrylate (MA), ethyl acrylate (EA), and n-butyl acrylate (BA). Ammonium persulfate (APS) was used as an initiator and poly(vinyl alcohol) (PVA) was used as a protective colloid. The significant result was described as follows. The activation energy determined by an isothermal analysis in the temperature region between $100{\sim}200^{\circ}C$ of the copolymer had the order of PVAc/PMA > PVAc/PEA > PVAc/PBA. The peel strengths before and after the plasma treatment were the order of PVAc/PMA > PVAc/PEA > PVAc/PBA.

Water Resistance and Thermal Properties of Resin Based on Silane-modified Vinyl Acetate-Acrylic Emulsion Copolymers (실리콘 수식 비닐아세테이트-아크릴 공중합체 수지의 방수성 및 열적 성질)

  • Naghash, Hamid Javaherian
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.306-312
    • /
    • 2010
  • Triphenylvinylsilane (TPVS) containing vinyl acetate (VAc), butyl acrylate (BA), and Nmethylolacrylamide (NMA) copolymers were prepared by emulsion polymerization. The polymerization was performed at $80^{\circ}C$ in the presence of auxiliary agents and ammonium peroxodisulfate (APS) as the initiator. Sodium dodecyl sulphate (SDS) and Arkupal N-300 were used as anionic and nonionic emulsifiers, respectively. The resulting copolymers were characterized by using Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and dynamic light scattering (DLS). Thermal properties of the copolymers were studied by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The morphology of copolymers was also investigated by scanning electron microscopy (SEM) and then the effects of silicone concentrations on the properties of the TPVS-containing VAc-acrylic emulsion copolymers were discussed. The obtained copolymers have high solid content (50%) and can be used in weather resistant emulsion paints as a binder.

Analysis of Free Amino Acids and Flavors in Fermented Jujube Wine by HPLC and GC/MS (GC-MS 및 HPLC를 이용한 대추발효주의 유리 아미노산 및 향기성분 분석)

  • Chun, Myoung Sook;Kim, Soon Jin;Noh, Bong Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.779-784
    • /
    • 2012
  • Characteristic chemical compositions of jujube wine using different preparation methods including fermentation were investigated. Fermentation for jujube wine started using whole fruit (JW1), seed-removed fruit (JW2) and whole fruit heated at $100^{\circ}C$ for 2 h and then extracted (JW3). The free amino acids and flavors were analyzed quantitatively by HPLC and GC-MS. A total of 18 amino acids were identified in all samples. The amount of total free amino acids was detected from 141-210 ppm (JW1), 147-342 ppm (JW2), and 336-362 ppm (JW3). Large amounts of proline, aspartate, glutamate, arginine and alanine were detected in jujube wine. Thirteen kinds of volatile compounds including six alcoholic compounds (ethyl alcohol, iso-butyl alcohol, n-butyl alcohol, iso-amyl alcohol, n-amyl alcohol, and phenethyl alcohol), four ester (ethyl acetate, hexyl acetate, ethyl caprylate, and phenethyl acetate) and three aldehydes (diethylacetal, furfural, and benzaldehyde) were detected. Ethyl alcohol (30.50-33.95% peak area), benzaldehyde (2.55-15.97% ratio), furfural (0.07-15.28% ratio), iso-amyl alcohol (1.04-14.73% ratio), and phenethyl acetal (0.78-9.28% ratio) were abundant in jujube wine.

Synthesis of High Molecular Weight Poly(vinyl alcohol) by Low Temperature Polymerization of Vinyl Acetate in Tertiary Butyl Alcohol and the Following Saponification (아세트산비닐의 삼차부틸알코올계 저온 중합 및 비누화에 의한 고분자량 폴리비닐알코올의 합성)

  • 류원석;한성수;최진현;유상우;홍성일
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.610-620
    • /
    • 2000
  • Vinyl acetate (VAc) was polymerized at 30, 40, and 5$0^{\circ}C$ using 2,2'-azobis (2,4-dimethylvaleronitrile) (ADMVN) and tertiary butyl alcohol (TBA) as the initiator and the solvent, respectively. High molecular weight (HMW) atactic poly(vinyl alcohol) (PVA) was prepared by saponifying the poly(vinyl acetate) (PVAc) synthesized. The effect of polymerization conditions were investigated in terms of conversion, degree of branching for acetyl group of PVAc, and molecular weight of both PVAc and PVA. The polymerization rate of VAc in TBA was proportional to the 0.49th power of ADMVN concentration in good accordance with the theoretical value of 0.5. HMW-PVA with high yield could be obtained successfully, probably due to lower polymerization temperature and decreased chain transfer reaction rate which was achieved by adopting ADMVN and TBA. PYAc having average degree of polymerization (P$_{n}$) of 10000~13000 was obtained at the conversion of 35~70%. Saponification of so prepared PVAc yielded PVA having P$_{n}$ of 2400~6100. The syndiotactic diad content increased with decreasing polymerization temperature and increasing VAc concentration due to a steric hindrance effect of TBA during polymerization.

  • PDF

Kinetics in Phase Transfer Catalysis with Heterogeneous Liquid-Liquid System (액-액 불균일계에서 상이동촉매의 반응속도론 해석)

  • Park, Sang-Wook;Moon, Jin-Bok;Hwang, Kyong-Son
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.230-237
    • /
    • 1994
  • The reaction conversions of n-butyl acetate in the alkaline hydrolysis of n-butyl acetate by Aliquat 336 were measured in a flat agitator and a dispersion agitator. These measured data was used to analyze the complicated reaction mechanism of the liquid-liquid heterogeneous reaction by a phase transfer catalyst with a pseudo-first order reaction model, a interfacial reaction model and a bulk-body reaction model. The pseudo-firsts order reaction model and the interfacial reaction model could be explained by the experimental data from the dispersion agitator and the bulk-boby reaction model could be explained by those from the flat agitator and the reaction rate constants were $3.1{\times}10^{-4}$, $7.3{\times}10^{-4}$, $6.6m^3/kmol.s$ from these models at $25^{\circ}C$, respectively.

  • PDF