DOI QR코드

DOI QR Code

Characteristics of Isothermal Analysis and Emulsion Copolymerization of Vinyl Acetate/Alkyl Acrylate

비닐아세테이트/알킬아크릴레이트계 에멀젼 공중합과 등온 열분해 특성

  • Cho, Dae-Hoon (Department of Chemical Engineering, Dong-A University) ;
  • Choe, Sung-Il (Department of Chemical Engineering, Dong-A University) ;
  • Seul, Soo-Duk (Department of Chemical Engineering, Dong-A University)
  • 조대훈 (동아대학교 공과대학 화학공학과) ;
  • 최성일 (동아대학교 공과대학 화학공학과) ;
  • 설수덕 (동아대학교 공과대학 화학공학과)
  • Received : 2012.03.15
  • Accepted : 2012.06.07
  • Published : 2012.04.30

Abstract

Vinyl acetate/alkyl acrylate copolymers were prepared by water-born emulsion copolymerization according to the compositional change of vinyl acetate and various alkyl acrylates such as methyl acrylate (MA), ethyl acrylate (EA), and n-butyl acrylate (BA). Ammonium persulfate (APS) was used as an initiator and poly(vinyl alcohol) (PVA) was used as a protective colloid. The significant result was described as follows. The activation energy determined by an isothermal analysis in the temperature region between $100{\sim}200^{\circ}C$ of the copolymer had the order of PVAc/PMA > PVAc/PEA > PVAc/PBA. The peel strengths before and after the plasma treatment were the order of PVAc/PMA > PVAc/PEA > PVAc/PBA.

비닐아세테이트와 알킬아크릴레이트계 에멀젼공중합에서 개시제인 ammonium persulfate (APS)의 농도, 보호 콜로이드인 poly(vinyl alcohol) (PVA)의 종류와 농도, 공단량체인 methyl acrylate (MA), ethyl acrylate (EA), n-butyl acrylate (BA)의 혼합비를 변화시켜 중합하였다. 제조된 poly(vinyl acetate-co-methyl acrylate) (PVAc/PMA), poly(vinyl acetate-co-ethyl acrylate) (PVAc/PEA), poly(vinyl acetate-co-n-butyl acrylate) (PVAc/PBA)에 대하여 다음과 같은 결론을 얻었다. 등온 열분해법으로 $100{\sim}200^{\circ}C$ 영역에서 구한 비닐아세테이트와 알킬아크릴레이트 공중합체에 대한 등온 열분해 활성화에너지는 PVAc/PMA > PVAc/PEA > PVAc/PBA이었으며, 플라스마 처리 전과 후의 접착박리강도는 PVAc/PMA > PVAc/PEA > PVAc/PBA의 순이었다.

Keywords

Acknowledgement

Supported by : 동아대학교

References

  1. H. Y. Erbil, Vinyl acetate emulsion polymerization and Copolymerization with acrylic monomer, 165, CRC Press (2000).
  2. M. S. Kim and S. D. Seul, Polymer (Korea), 33, 230 (2009).
  3. K. Ito, J. Polym. Sci., Polym. Part. A-1, 10, 1481 (1972).
  4. L. M. Minsle and E. W. Taylor, U. S. Patent, 2, 582, 055 (1952).
  5. W. S. Lyoo, S. S. Han, J. H. Choi, S. W. Yoo, S. I. Hong, and W. S. Ha, Polymer (Korea), 20, 610 (2000).
  6. J. R. Lee, C. S. Choi, and H. J. Kang, Polymer (Korea), 33, 131 (2009).
  7. H. J. Naghash, Polymer (Korea), 34, 306 (2010).
  8. D. H. Sim and S. D. Seul, Polymer (Korea), 32, 276 (2008).
  9. D. H. Sim and S. D. Seul, Polymer (Korea), 32, 433 (2008).
  10. D. H. Sim and S. D. Seul, Polymer (Korea), 33, 45 (2008).
  11. Y. S. Jung, S. K. Min, and S. D. Seul, J. Adhesion and Interface, 10, 148 (2009).
  12. Y. S. Jung, S. K. Min, and S. D. Seul, J. Adhesion and Interface, 10, 174 (2009).
  13. S. D. Seul, J. Adhesion and Interface, 11, 112 (2010).
  14. J. C. Lim, B. S. Kim, and S. Y. Choi, Polym. Sci. Technol., 6, 215 (1995).
  15. S. D. Seul, D. K. Kim, and S. W. Park, Hwahak Konghak, 25, 237 (1987).
  16. D. H. Sim, J. E. Ban, M. S. Kim, and S. D. Seul, Polymer (Korea), 32, 476 (2008).
  17. S. R. Lee and S. D. Seul, Polymer (Korea), 25, 621 (2001).