• Title/Summary/Keyword: n-Queue

Search Result 109, Processing Time 0.03 seconds

M/G/1 QUEUE WITH COMPLEX VACATION POLICIES

  • Lim, Jong-Seul;Oh, Choon-Suk
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.943-952
    • /
    • 1999
  • Models of single-server queues with vacation have been widely used to study the performance of many computer communica-tion and production system. In this paper we use the formula for a wide class of vacation policies and multiple types of vacations based on the M/G/1 queue with generalized vacations and exhaustive service. furthermore we derive the waiting times for many complex vacation policies which would otherwise be to analyze. These new results are also applicable to other related queueing models. if they conform with the basic model considered in this paper.

AN M/G/1 QUEUE WITH GENERALIZED VACATIONS AND EXHAUSTIVE SERVICE

  • Lim, Jong-Seul;Lee, Sang-Heon
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.309-320
    • /
    • 1999
  • Models of single-server queues with vacations have been widely used to study the performance of many computer communi-cation and production systems. In this paper we analyze an M/G/1 queue with generalized vacations and exhaustive service. This sys-tem has been shown to possess a stochastic decomposition property. That is the customer waiting time in this system is distributed as the sum of the waiting time in a regular M/G/1 queue with no va-cations and the additional delay due to vacations. Herein a general formula for the additional delay is derived for a wide class of vacation policies. The formula is also extended to cases with multiple types of vacations. Using these new formulas existing results for certain vacation models are easily re-derived and unified.

Comments on "Optimal Utilization of a Cognitive Shared Channel with a Rechargeable Primary Source Node"

  • El Shafie, Ahmed;Salem, Ahmed Sultan
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.265-266
    • /
    • 2015
  • In a recent paper [1], the authors investigated the maximum stable throughput region of a network composed of a rechargeable primary user and a secondary user plugged to a reliable power supply. The authors studied the cases of an infinite and a finite energy queue at the primary transmitter. However, the results of the finite case are incorrect. We show that under the proposed energy queue model (a decoupled M/D/1 queueing system with Bernoulli arrivals and the consumption of one energy packet per time slot), the energy queue capacity does not affect the stability region of the network.

STOCHASTIC ORDERS IN RETRIAL QUEUES AND THEIR APPLICATIONS

  • Shin Yang Woo
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.105-108
    • /
    • 2000
  • We consider a Markovian retrial queue with waiting space in which the service rates and retrial rates depend on the number of customers in the service facility and in the orbit, respectively. Each arriving customer from outside or orbit decide either to enter the facility or to join the orbit in Bernoulli manner whose entering probability depend on the number of customers in the service facility. In this paper, a stochastic order relation between two bivariate processes (C(t), N(t)) representing the number of customers C(t) in the service facility and N(t) one in the orbit is deduced in terms of corresponding parameters by constructing the equivalent processes on a common probability space. Some applications of the results to the stochastic bounds of the multi-server retrial model are presented.

  • PDF

Stochastic Comparisons of Markovian Retrial Queues

  • Shin, Yang-Woo;Kim, Yeong-Cheol
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.4
    • /
    • pp.473-488
    • /
    • 2000
  • We consider a Markovian retrial queue with waiting space in which the service rates and retrial rates depend on the number of customers in the service facility and in the orbit, respectively. Each arriving customer from outside or orbit decide either to enter the facility or to join the orbit in Bernoulli manner whose entering probability depend on the number of customers in the service facility. In this paper, a stochastic order relation between two bivariate processes(C(t), N(t)) representing the number of customers C(t) in the service facility and one N(t) in the orbit is deduced in terms of corresponding parameters by constructing the equivalent processes on a common probability space. some applications of the results to the stochastic bounds of the multi-server retrial model are presented.

  • PDF

QUEUEING SYSTEMS WITH N-LIMITED NONSTOP FORWARDING

  • LEE, YUTAE
    • East Asian mathematical journal
    • /
    • v.31 no.5
    • /
    • pp.707-716
    • /
    • 2015
  • We consider a queueing system with N-limited nonstop forwarding. In this queueing system, when the server breaks down, up to N customers can be serviced during the repair time. It can be used to model an assembly line consisting of several automatic stations and a manual backup station. Within the framework of $Geo^X/D/1$ queue, the matrix analytic approach is used to obtain the performance of the system. Some numerical examples are provided.

A Scheduling Algorithm for Input-Queued Switches (입력단에 버퍼가 있는 라우터를 위한 일정계획 방안)

  • 주운기;이형섭;이형호
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.445-448
    • /
    • 2000
  • This paper considers a scheduling algorithm for high-speed routers, where the router has an N x N port input-queued switch and the input queues are composed of N VOQ(Virtual Output Queue)s at each input port. The major concern of the paper is on the scheduling mechanism for the router. The paper discusses the preferred levels of the performance measures and then develope a non-linear mixed integer programming. Additionally, the paper suggests a heuristic scheduling algorithm for efficient and effective switching.

  • PDF

QuLa: Queue and Latency-Aware Service Selection and Routing in Service-Centric Networking

  • Smet, Piet;Simoens, Pieter;Dhoedt, Bart
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.306-320
    • /
    • 2015
  • Due to an explosive growth in services running in different datacenters, there is need for service selection and routing to deliver user requests to the best service instance. In current solutions, it is generally the client that must first select a datacenter to forward the request to before an internal load-balancer of the selected datacenter can select the optimal instance. An optimal selection requires knowledge of both network and server characteristics, making clients less suitable to make this decision. Information-Centric Networking (ICN) research solved a similar selection problem for static data retrieval by integrating content delivery as a native network feature. We address the selection problem for services by extending the ICN-principles for services. In this paper we present Queue and Latency, a network-driven service selection algorithm which maps user demand to service instances, taking into account both network and server metrics. To reduce the size of service router forwarding tables, we present a statistical method to approximate an optimal load distribution with minimized router state required. Simulation results show that our statistical routing approach approximates the average system response time of source-based routing with minimized state in forwarding tables.

An Efficient Data Structure for Queuing Jobs in Dynamic Priority Scheduling under the Stack Resource Policy (Stack Resource Policy를 사용하는 동적 우선순위 스케줄링에서 작업 큐잉을 위한 효율적인 자료구조)

  • Han Sang-Chul;Park Moon-Ju;Cho Yoo-Kun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.6
    • /
    • pp.337-343
    • /
    • 2006
  • The Stack Resource Policy (SRP) is a real-time synchronization protocol with some distinct properties. One of such properties is early blocking; the execution of a job is delayed instead of being blocked when requesting shared resources. If SRP is used with dynamic priority scheduling such as Earliest Deadline First (EDF), the early blocking requires that a scheduler should select the highest-priority job among the jobs that will not be blocked, incurring runtime overhead. In this paper, we analyze the runtime overhead of EDF scheduling when SRP is used. We find out that the overhead of job search using the conventional implementations of ready queue and job search algorithms becomes serious as the number of jobs increases. To solve this problem, we propose an alternative data structure for the ready queue and an efficient job-search algorithm with O([log$_2n$]) time complexity.