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QUEUEING SYSTEMS WITH N-LIMITED NONSTOP

FORWARDING
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Abstract. We consider a queueing system with N -limited nonstop for-

warding. In this queueing system, when the server breaks down, up to N

customers can be serviced during the repair time. It can be used to model
an assembly line consisting of several automatic stations and a manual

backup station. Within the framework of GeoX/D/1 queue, the matrix

analytic approach is used to obtain the performance of the system. Some
numerical examples are provided.

1. Introduction

In many practical systems such as communications and manufacturing sys-
tems, the assumption that the server is reliable and always available to cus-
tomers seems to be unrealistic. It is well known that the performance of un-
reliable system is highly influenced by server breakdowns [1]. For this reason,
queueing systems with servers subject to breakdowns and repairs have been
studied extensively. For related works, refer to [2, 3, 4, 5, 6, 7, 8, 9, 10], where
customers who find the server broken down should wait in the queue, without
being serviced, until the server is repaired.

This paper analyses a variant of a queueing system with unreliable server:
discrete-time queueing system with N -limited nonstop forwarding. This queue-
ing system operates as follows: customers arrive according to a batch geometric
process. The server starts immediately the repair process whenever the server
breaks down. Despite the server breakdown, up to N customers can be serviced
during the repair time.

Many practical situations can be represented more accurately by the queueing
system with N -limited nonstop forwarding. An example is found in manufac-
turing systems [11]. There is an assembly line consisting of several automatic

Received February 24, 2015; Revised April 20, 2015; Accepted September 21, 2015.

2010 Mathematics Subject Classification. 60K25, 68M20.
Key words and phrases. queueing system; nonstop forwarding; N -limited; computer

network.
This research was supported by Basic Science Research Program through the Na-

tional Research Foundation of Korea(NRF) funded by the Ministry of Education(No. NRF-
2013R1A1A4A01013094).

c©2015 The Youngnam Mathematical Society
(pISSN 1226-6973, eISSN 2287-2833)

707



708 YUTAE LEE

stations and a backup station in the end of the line. The backup station is able
to perform the work of any station in the line and is typically a manual station
that is used to fix the assembly from a failed station [11]. When a breakdown
occurs, the assembly line remains operational, while all jobs going through the
line bypass the failed station and have to be fixed at the backup station. Due
to the high cost at the manual backup station, if the breakdown station is not
repaired until a specified amount of work is processed, the entire assembly line
is shut down.

In this paper, within the framework of discrete-time single server GeoX/D/1
queueing system, the stability condition and the service availability are given.
The matrix analytic approach is used to obtain the steady-state joint probability
distribution of the number of customers and system state. The mean delay is
also derived. Finally, some numerical examples are provided.

2. GeoX/D/1 queue with N-limited nonstop forwarding

We consider a discrete-time single server queueing system in which the time
axis is divided into fixed-length contiguous intervals, referred to as slots. Cus-
tomers arrive to the system from outside in accordance with a batch geometric
process. The numbers of customers entering the system during the consecutive
slots are assumed to be i.i.d. non-negative discrete random variables with an
arbitrary probability distribution. Let ak be the number of customers that ar-
rive during slot k. It is assumed that the service of a customer can start only at
a slot boundary. Owing to the synchronous type of service, a customer cannot
be put into service in the slot that it has arrived. Its service can start no earlier
than at the beginning of the next full slot. The service times of customers are
assumed to be a one slot. The system has one buffer of infinite capacity to
accommodate arriving customers. Customers are served in FIFO (First In First
Out) order. The exact location of arrival instants within the slot length is not
specified here. It is even irrelevant as long as the system is observed at slot
boundaries only.

It is assumed that the server is subject to breakdowns and repairs. The server
broken down starts immediately the repair process. The lifetime of the server
is assumed to be geometrically distributed with parameter α, where α is the
failure probability that a server breakdown occurs in a slot. The repair times
of the server follow a geometrical distribution with parameter β, where β is the
repair probability that a repair is completed in a slot. Even when the server
breaks down, the system can continue to forward some customers. After every
breakdown of the server, up to N customers can be serviced during the repair
time. The interarrival times, the lifetimes, and the repair times are assumed to
be mutually independent of each other.

Let M(k) be the number of customers in the system at the beginning of
slot k. Let S(k) be the server state at the beginning of slot k: if the server
is under repair and the system has forwarded n customers after the server’s
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breakdown, then S(k) = N−n for n = 0, 1, 2, ..., N ; if the server is normal, then
S(k) = N + 1. Then {(M(k), S(k)) , k = 0, 1, 2, ...} is a Markovian process with
state space {(m,n),m = 0, 1, 2, ..., n = 0, 1, ..., N + 1}. We have the transition
matrix of the process {(M(k), S(k)) , k = 0, 1, 2, ...}:

P =


a0B a1B a2B a3B · · ·
a0C A1 A2 A3 · · ·
0 a0C A1 A2 · · ·
0 0 a0C A1 · · ·
...

...
...

...
. . .

 ,

where the matrices Ai, B, and C are (N + 2)× (N + 2) matrices given by

Ai =



ai−1(1− β) 0 0 · · · 0 0 ai−1β
ai(1− β) 0 0 · · · 0 0 aiβ

0 ai(1− β) 0 · · · 0 0 aiβ
...

...
...

. . .
...

...
...

0 0 0 · · · 0 0 aiβ
0 0 0 · · · ai(1− β) 0 aiβ
0 0 0 · · · 0 aiα ai(1− α)


.

B =



1− β 0 0 · · · 0 0 β
0 1− β 0 · · · 0 0 β
0 0 1− β · · · 0 0 β
...

...
...

. . .
...

...
...

0 0 0 · · · 1− β 0 β
0 0 0 · · · 0 1− β β
0 0 0 · · · 0 α 1− α


,

C =



0 0 0 · · · 0 0 0
1− β 0 0 · · · 0 0 β

0 1− β 0 · · · 0 0 β
...

...
...

. . .
...

...
...

0 0 0 · · · 0 0 β
0 0 0 · · · 1− β 0 β
0 0 0 · · · 0 α 1− α


.

3. Steady state analysis

A necessary and sufficient condition to ensure the existence for the stationary
probability vector of the process {(M(k), S(k)) , k = 0, 1, 2, ...} is provided. Let

A ≡ a0C +

∞∑
i=1

Ai.
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Then A is given by

A =



1− β 0 0 · · · 0 0 β
1− β 0 0 · · · 0 0 β

0 1− β 0 · · · 0 0 β
...

...
...

. . .
...

...
...

0 0 0 · · · 0 0 β
0 0 0 · · · 1− β 0 β
0 0 0 · · · 0 α 1− α


,

which is finite and irreducible. The stability condition for the system is given
[12] by the following inequality

π

∞∑
i=1

iAi+1e < πa0Ce,

where π ≡ (π0, π1, π2, ..., πN+1) is the stationary probability vector of A and e is
a column vector whose elements are all equal to 1. Solving the linear equations
πA = π and πe = 1, we get

π0 =
α

α+ β
(1− β)

N
,

πi =
αβ

α+ β
(1− β)

N−i
, i = 1, 2, ..., N,

πN+1 =
β

α+ β
.

Then, the stability condition of the system is given by

∞∑
i=1

iai < 1− α

α+ β
(1− β)

N
, (1)

where the right-hand side of (1) is the probability that the service is available
regardless of server breakdown, lim

k→∞
P {S(k) 6= 0}.

It is assumed that the stability condition (1) is satisfied. Let

x ≡ (x0,x1,x2, ...)

be the steady-state distribution of the nubmer of customers and the system
state of the M/G/1-type process {(M(k), S(k)) , k = 0, 1, 2, ...}, i.e.,

xi,j ≡ lim
k→∞

P {M(k) = i, S(k) = j} ,

xi ≡ (xi,0, xi,1, ..., xi,N+1) .

For the solution of M/G/1-type processes, several algorithms exist [12, 13, 14,
15, 16, 17]. These algorithms starts with the computation of matrix G as the
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solution of the following equation:

G = a0C +

∞∑
i=1

AiG
i. (2)

The matrix G is obtained by solving iteratively the equation (2) or by using the
cyclic-reduction algorithm [13]. The stationary probability vector x is computed
recursively using either Ramaswami’s recursive formula [14] or its fast FFT
version [15]. ETAQA [17] is the other available alternative for the solution of
M/G/1-type processes.

4. Mean delay

Using the stationary probability vector presented above, we now determine
the mean delay E(D). Let di,j be the mean remaining delay of a tagged customer
at the beginning of a slot when the number of customers that will be served
before the tagged customer is i− 1 and the server state is j for i = 1, 2, ..., and
j = 0, 1, ..., N + 1. Letting

di ≡ (di,0, di,1, ..., di,N+1)
t
,

F ≡


1− β 0 · · · 0 β

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

 ,

we obtain d1 = Fd1 + e and dn = Cdn−1 + Fdn + e for n > 2. Hence,

dn =

n−1∑
i=0

[
(I− F)

−1
C
]i

(I− F)
−1

e, n ≥ 1.

Then, the mean delay E(D) of a tagged customer is obtained by

E(D) =

∞∑
k=1

b(k)

 N∑
j=0

x0,j {βdk,N+1 + (1− β)dk,j}

+x0,N+1 {αdk,N + (1− α)dk,N+1}

+

∞∑
i=1

{
xi,0 (βdk+i,N+1 + (1− β)dk+i,0)

+xi,N+1 (αdk+i−1,N + (1− α)dk+i−1,N+1)

+

N∑
j=1

xi,j (βdk+i−1,N+1 + (1− β)dk+i−1,j−1)


 ,
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Figure 1. Service availability when β = 0.25.

where b(k) is the probability of a tagged customer being in the kth position of
its batch, which is given by

b(k) =
1∑∞

i=1 iai

∞∑
j=k

aj .

5. Numerical examples

Some numerical examples are presented. Note that the system with N = 0
corresponds to the system without nonstop forwarding and the system with
N =∞ corresponds to the system without server breakdown.

Figure 1 reveals the effect of the value N on the service availability, given by
the right-hand side of (1), when β = 0.25. From the figure, we can see that, as
the value N increases, the service availability also increases and converges to
1, which is the availability of the system without server breakdown. Moreover,
to achieve target availability, the system with the larger failure probability α
requires the larger N . For example, to achieve 99% availability, the system with
α = 0.1 requires N ≥ 12, while the system with α = 0.7 requires N ≥ 16.

The results of mean delay are shown in Figures 2, 3, and 4. We consider the
case that the number of customer arrivals in a slot has a Poisson distribution
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Figure 2. Mean delay E(D) vs. arrival rate p when α = 0.1
and β = 0.25.

with rate p. i.e.,

ak = e−p
pk

k!
.

We choose α = 0.1 and β = 0.25 for Figure 2, β = 0.25 and p = 0.5 for Figure 3,
and α = 0.1 and p = 0.5 for Figure 4. As shown in the figures, the mean delay
increases as the arrival rate p increases, as the failure probability α increases, or
as the repair probability β decreases. Moreover, while the mean delay decreases
and converges to the mean delay of the system without server breakdown as the
value of N increases.

6. Conclusion

This paper considered a variant of a queueing system with unreliable server:
queueing system with N -limited nonstop forwarding. In this queueing system,
the server starts immediately the repair process whenever the server breaks
down. Despite the server breakdown, up to N customers can be serviced during
the repair time. It can be used to model an assembly line consisting of several
automatic stations and a manual backup station. Within the framework of
GeoX/D/1 queue with N -limited nonstop forwarding, the stability condition
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Figure 3. Mean delay E(D) vs. failure probability α when
β = 0.25 and p = 0.5

and the service availability were given. The matrix analytic approach was used
to obtain the steady-state distribution of the number of customers and system
state. The mean delay was also derived. Finally, some numerical examples were
provided.
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