• 제목/요약/키워드: mycelial morphogenesis

검색결과 5건 처리시간 0.021초

Morphological Engineering of Filamentous Fungi: Research Progress and Perspectives

  • Zhengwu Lu;Zhiqun Chen;Yunguo Liu;Xuexue Hua;Cuijuan Gao;Jingjing Liu
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권6호
    • /
    • pp.1197-1205
    • /
    • 2024
  • Filamentous fungi are important cell factories for the production of high-value enzymes and chemicals for the food, chemical, and pharmaceutical industries. Under submerged fermentation, filamentous fungi exhibit diverse fungal morphologies that are influenced by environmental factors, which in turn affect the rheological properties and mass transfer of the fermentation system, and ultimately the synthesis of products. In this review, we first summarize the mechanisms of mycelial morphogenesis and then provide an overview of current developments in methods and strategies for morphological regulation, including physicochemical and metabolic engineering approaches. We also anticipate that rapid developments in synthetic biology and genetic manipulation tools will accelerate morphological engineering in the future.

Several Genes Expressed During Morphogenesis of Lentinus edodes(ImHyup-1)

  • Lee, Sang-Sun;Hong, Sung-Woon;Kim, Seung-Hae;Kim, Bong-Cheol
    • Mycobiology
    • /
    • 제29권3호
    • /
    • pp.135-141
    • /
    • 2001
  • Differential display of reverse transcription(DDRT)-PCR was conducted to have a profile of the differentially expressed genes during the formation of fruiting body of Lentinus edodes. The lines of L. edodes(ImHyup-1) employed were cultivated in the artificial blocks of sawdust, and the fruiting body was induced from the mycelia or the mass protruded from the brown surface of the sawdust blocks. RNAs were prepared from the four different developmental stages; mycelial, primordial, and stipes and pileus of fruiting body. The fragments of cDNA were synthesized from the combinations of the arbitrary primers and 3' one anchored Oligo-dT primer. Twelve combinations using the primers have been tested, and among them nineteen bands were identified as differentially expressed. Those genes were further analyzed by DNA sequencing and followed by homology search. Characterization of one clone was conducted as a preliminary data and more are under investigation.

  • PDF

Functional Analysis of MCNA, a Gene Encoding a Catalytic Subunit of Calcineurin, in the Rice Blast Fungus Magnaporthe oryzae

  • Choi, Jin-Hee;Kim, Yang-Seon;Lee, Yong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권1호
    • /
    • pp.11-16
    • /
    • 2009
  • Magnaporthe oryzae, the causal agent of rice blast, forms a specialized infection structure, called an appressorium, which is crucial for penetration and infection of the host plant. Pharmacological data suggest that calcium/calmodulindependent signaling is involved in appressorium formation in this fungus. To understand the role of the calcium/calmodulin-activated protein phosphatase on appressorium formation at the molecular level, MCNA, a gene encoding the catalytic subunit of calcineurin, was functionally characterized in M. oryzae. Transformants expressing sense/antisense RNA of MCNA exhibited significant reductions in mycelial growth, conidiation, appressorium formation, and pathogenicity. cDNA of MCNA functionally complemented a calcineurin disruptant strain (cmp1::LEU2 cmp2::HIS3) of Saccharomyces cerevisiae. These data suggest that calcineurin A plays important roles in signal transduction pathways involved in the infection-related morphogenesis and pathogenicity of M. oryzae.

Functional Anaylsis of sprD Gene Encoding Streptomyces griseus Protease D(SGPD) in Streptomyces griseus

  • Choi Si-Sun;Kim Joung-Hoon;Kim Jong-Hee;Kang Dae-Kyung;Kang Sang-Soon;Hong Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권2호
    • /
    • pp.312-317
    • /
    • 2006
  • The chromosomal sprD gene encoding Streptomyces griseus protease D (SGPD), a chymotrypsin-like protease, was disrupted in Streptomyces griseus by insertion of the neomysin-resistance gene. The production of chymotrypsin activity of sprD disruptant was not completely abolished, but delayed by 24 h, compared with that of wild-type strain. The aerial mycelial formation of sprD disruptant was retarded, and specifically the formation of spores was not observed in the central region of colonies. However, normal morphological development into spores was observed in the marginal region of colonies. In addition, the production of yellow pigment that might be dependent on A-factor was also decreased in the sprD disruptant, compared with that of the wild-type strain. Introduction of the sprD gene, which was placed on a high copy-numbered plasmid into S. griseus ${\Delta}sprD$, partially restored the ability of morphological development, and a significant level of sporulation was observed. When the overexpression vector for sprD, pWHM3-D, was introduced in S. griseus, there was no significant change in the chymotrypsin activity or colonial morphology, in contrast to Streptomyces lividans, indicating the presence of a tight regulation system for the overexpression of the sprD gene in S. griseus.

NADPH Oxidases Are Required for Appressorium-Mediated Penetration in Colletotrichum scovillei-Pepper Fruit Pathosystem

  • Fu, Teng;Lee, Noh-Hyun;Shin, Jong-Hwan;Kim, Kyoung Su
    • The Plant Pathology Journal
    • /
    • 제38권4호
    • /
    • pp.345-354
    • /
    • 2022
  • NADPH oxidase (Nox) complexes are known to play essential roles in differentiation and proliferation of many filamentous fungi. However, the functions of Noxs have not been elucidated in Colletotrichum species. Therefore, we set out to characterize the roles of Nox enzymes and their regulators in Colletotrichum scovillei, which causes serious anthracnose disease on pepper fruits in temperate and subtropical and temperate region. In this study, we generated targeted deletion mutants for CsNox1, CsNox2, CsNoxR, and CsNoxD via homologous recombination. All deletion mutants were normal in mycelial growth, conidiation, conidial germination, and appressorium formation, suggesting that CsNox1, CsNox2, CsNoxR, and CsNoxD are not involved in those developmental processes. Notably, conidia of 𝜟Csnox2 and 𝜟Csnoxr, other than 𝜟Csnox1 and 𝜟Csnoxd, failed to cause anthracnose on intact pepper fruits. However, they still caused normal disease on wounded pepper fruits, suggesting that Csnox2 and CsnoxR are essential for penetration-related morphogenesis in C. scovillei. Further observation proved that 𝜟Csnox2 and 𝜟Csnoxr were unable to form penetration peg, while they fully developed appressoria, revealing that defect of anthracnose development by 𝜟Csnox2 and 𝜟Csnoxr resulted from failure in penetration peg formation. Our results suggest that CsNox2 and CsNoxR are critical for appressorium-mediated penetration in C. scovillei-pepper fruit pathosystem, which provides insight into understanding roles of Nox genes in anthracnose disease development.