• Title/Summary/Keyword: mutual radiation

Search Result 79, Processing Time 0.025 seconds

Computation of the Mutual Radiation Impedance in the Acoustic Transducer Array: A Literature Survey

  • Paeng, Dong-Guk;Bok, Tae-Hoon;Lee, Jong-Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2E
    • /
    • pp.51-59
    • /
    • 2009
  • Mutual radiation impedance becomes more important in the design and analysis of acoustic transducers for higher power, better beam pattern, and wider bandwidth at low frequency sonar systems. This review paper focused on literature survey about the researches of mutual radiation impedance in the acoustic transducer arrays over 60 years. The papers of mutual radiation impedance were summarized in terms of transducer array structures on various baffle geometries such as planar, cylindrical, spherical, conformal, spheroidal, and elliptic cylindrical arrays. Then the computation schemes of solving conventional quadruple integral in the definition of mutual radiation impedance were surveyed including spatial convolution method, which reduces the quadruple integral to a double integral for efficient computation.

An Investigation of Mutual Radiation Impedance in a Plane Array Acoustic Transducer (평면 배열형 사각형 음향 트랜스듀서의 상호 방사 임피던스 연구)

  • Lee, Jong-Kil;Seo, In-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.21-26
    • /
    • 1995
  • In this paper integral equations are derived and simulated numerically for the mutual radiation impedance of an acoustic transducer in a Plane array. It is assumed that the pistons are mounted in the rigid infinite baffle. The mutual radiation impedance is separated into resistance and reactance and plotted as a function of ka and kd. Mutual radiation resistance is decreased and perturbed according to increase of ka. Mutual radiation reactance is decreased along to increase of ka. Mutual impedance is decreased when kd is increased. However, when ka is 6, 13, and 19 the interaction effect is decayed. When the relative piston position of the two pistons is 45 degree, the amount of interaction becomes minimized.

  • PDF

Calculation of Radiation Impedance for Piston Sources on a Spherical Baffle (구형 배플상의 피스톤 음원에 대한 방사임피던스 계산)

  • 박순종;김무준;김천덕
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.54-60
    • /
    • 2003
  • The characteristics of radiation impedance for piston source on a spherical baffle are analyzed by algorithms which consists of Finite Element Method (FEM) and Hybrid type Infinite Element Method (HIEM). The results of self-radiation impedance for radiation angle and mutual radiation impedance between piston sources coincided with other reports on the spherical rigid baffle. For the spherical non-rigid baffles, the variations of self-radiation impedance and mutual-radiation impedance are identified. Therefore, these results can be applied to design and radiation characteristics analysis of acoustic transducers.

A Prediction of Radiation Power for the Planar Array Acoustic Transducer Considering Mutual Coupling Effects (상호 간섭 영향을 고려한 평면 배열형 음향 트랜스듀서의 방사 출력 예측)

  • Lee, Jong-Kil;Seo, In-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.17-22
    • /
    • 1996
  • Planar array of acoustic transducer is normally used in a sonar system. Acoustic radiation makes beam pattern in underwater uses. The main source of the beam pattern is due to the transducer array. Therefore, estimation of the acoustic radiated power is necessary to predict the performance and efficiency of the transducer. As an example of the acoustic radiation power, nine acoustic transducers mounted to a rigid infinite baffle are considered in a theoretical model. Each piston's acoustic radiation consists of self- and mutual-radiation impedances. Total radiation impedances and acoustic radiation power of the transducers are extracted using on the theory of an equivalent electric circuit. The theoretical results reveal that acoustic radiation power of the transducer depends on the mutual coupling effects.

  • PDF

Compensation of Radiation Pattern Distortion by Mutual Coupling in the Array Antenna Using the Particle Swarm Optimization Algorithm (입자군집 최적화 알고리즘을 이용한 배열안테나의 상호결합에 의한 방사패턴 왜곡보상)

  • Kim, Jae Hee;Ahn, Chi-Hyung;Chun, Joong-Chang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.5
    • /
    • pp.458-464
    • /
    • 2016
  • This paper proposes the compensation method which decreases the radiation pattern distortion caused by the mutual coupling in an array antenna. If the element distance of an array antenna decreases, the radiation pattern could be distorted by the strong mutual coupling, which changes the magnitude and phase of input signals and causes an unwanted radiation pattern. To remove the pattern distortion, compensated input signals are inserted in an array antenna. The magnitude and phase of input signals are determined by Particle Swarm Optimization (PSO) algorithm. A $4{\times}1$ dipole array antenna with omnidirectional elements is used to confirm the validity of the algorithm, where each element is placed in 0.2 wavelength to evoke the strong coupling. After input signals are optimized by PSO, it is found that the compensated radiation results in the same as the ideal case.

Calculation of Self-radiation Impedance for a Rectangular Transducer (장방형 트랜스듀서의 자기방사 임피던스 계산)

  • 이기욱;김무준;하강열;김천덕
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.7
    • /
    • pp.85-89
    • /
    • 2000
  • In this paper, by extending the previously developed self- and mutual-radiation impedance calculation method for a regular-square vibrating surface by using numerical series, we proposed a method to obtain the self-radiation impedance of a rectangular transducer with an arbitrary integer ratio of the length to width. The proposed method exhibits high accuracy and a short computation time. After investigating the accuracy and computation time as the number of elements changes, we have calculated the self-radiation impedance of several rectangular transducers, and compared the results with those in the literature.

  • PDF

Calculation of the Mutual Radiation Impedance by the Spatial Convolution in the Cylindrical Structure (원통 구조에서 공간 콘볼루션을 이용한 상호 방사 임피던스 계산)

  • Bok, Tae-Hoon;Li, Ying;Paeng, Dong-Guk;Lee, Jong-Kil;Shin, Ku-Kyun;Joh, Chee-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • The mutual radiation impedance was calculated using the spatial convolution in the cylindrical structure. The Cartesian coordinate was transformed into the cylindrical coordinate using the spatial convolution for the cylindrical array structure. This method cannot consider the cylindrical baffle, but can reduce the computation time. The error for not considering the cylindrical baffle was analyzed by the comparison of the spatial convolution method with the quadruple integration method in the cylindrical structure. The mutual radiation resistance in the cylindrical structure was compared with the one in the planar baffle. Based on two kinds of the comparison, we presented the error of the suggesting method in this paper, confirming that the spatial convolution method could be applied to compute the mutual radiation impedance in the cylindrical structure at certain conditions.

Radiation power estimation for the planar array acoustic sensor considering mutual coupling effects (상호간섭영향을 고려한 평면배열형 음향센서의 방사출력 예측)

  • Lee, Jong-Kil;Seo, In-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.194-199
    • /
    • 1996
  • 평면 배열형 소나 센서에서는 트랜스듀서 상호간의 간섭효과들이 음을 방사하는 각각의 트랜스듀서 및 평면 배열의 빔패턴에 영향을 주게된다. 따라서 음향 방사출력의 계산은 소나용 트랜스듀서의 성능및 효율을 평가하는데 필수적이다. 음향 방사출력을 예측하기 위하여 무한 강성 배플에 고정된 수개의 트랜스듀서를 이론해석의 대상으로 설정하였다. 각 트랜스듀서는 자기방사 임피던스 및 상호방사 임피던스로 구성되어 있으며 이것의 총 방사 임피던스 및 음향반사 출력의 추출은 등가 전기회로 모델을 이용하였다. 이론및 수치해석의 결과에 근거하여 음향방사 출력은 각 트랜스듀서 상호간의 간섭의 양에 의존함을 보였으며 상호간섭에 의한 음향출력 손실은 25.05%에서 최고 51.52%정도임을 확인하였다.

  • PDF

A New Calculation Method for the Radiation Impedance of Transducer with Regular Square Vibrating Surface

  • Kim, Moo-Joon;Kim, Chun-Duck;Ha, Kang-Lyeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.1E
    • /
    • pp.20-26
    • /
    • 1999
  • Although the radiation impedance of a transducer with a regular square surface has been studied by many researchers, the formulas are still very complicated, which results in long computation time and low accuracy. In this paper, we propose a new algorithm for the calculation of acoustic radiation impedance in which the regular square vibrating surface of a transducer is divided into small elements and duplicate calculations are eliminated in the process of calculating mutual effects of the elements. Using this algorithm, shorter computation time and higher accuracy of results can be obtained. As a demonstration, the self and the mutual radiation impedance of transducers with a regular square surface are calculated and the accuracy of the results is evaluated.

  • PDF

방사 임피던스 영향을 고려한 최적 빔 설계 통합 S/W 구현

  • 편용국;임준석
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.12
    • /
    • pp.1069-1074
    • /
    • 2003
  • For beam forming method is equaled detection performance of water weapons system, the best beam plan is very important in it. This study showss that the plan software considered radiation, or mutual radiation impedance. This software calculated effect of mutual radiation impedance by sensor array form, it is planed that one of the press paramater in the beam plan.

  • PDF