DOI QR코드

DOI QR Code

Compensation of Radiation Pattern Distortion by Mutual Coupling in the Array Antenna Using the Particle Swarm Optimization Algorithm

입자군집 최적화 알고리즘을 이용한 배열안테나의 상호결합에 의한 방사패턴 왜곡보상

  • Received : 2016.09.28
  • Accepted : 2016.10.28
  • Published : 2016.10.30

Abstract

This paper proposes the compensation method which decreases the radiation pattern distortion caused by the mutual coupling in an array antenna. If the element distance of an array antenna decreases, the radiation pattern could be distorted by the strong mutual coupling, which changes the magnitude and phase of input signals and causes an unwanted radiation pattern. To remove the pattern distortion, compensated input signals are inserted in an array antenna. The magnitude and phase of input signals are determined by Particle Swarm Optimization (PSO) algorithm. A $4{\times}1$ dipole array antenna with omnidirectional elements is used to confirm the validity of the algorithm, where each element is placed in 0.2 wavelength to evoke the strong coupling. After input signals are optimized by PSO, it is found that the compensated radiation results in the same as the ideal case.

본 논문은 배열안테나의 상호결합(mutual coupling)에 의한 방사패턴 왜곡을 보상하는 최적화 방법을 제시하도록 한다. 배열안테나에서 안테나 사이의 간격이 좁아지게 되면 안테나 상호간의 커플링에 의해 방사패턴에 왜곡이 발생하게 된다. 상호결합은 각 안테나에 여기되는 신호의 크기와 위상을 변화시키며 이는 방사패턴의 왜곡으로 이어진다. 이런 방사패턴의 왜곡 문제를 해결하기 위하여 상호결합을 고려한 여기신호를 각 배열 요소에 공급하는 방법을 제안하였다. 공급신호의 크기와 위상을 결정하기 위하여 입자 군집 최적화 알고리즘(Particle Swarm Optimization)을 사용하였다. 왜곡 보상을 검증하기 위하여 전방향으로 동일한 방사패턴을 갖는 다이폴안테나를 사용하였으며, 배열안테나의 간격을 0.2파장으로 두어 상호결합이 많이 발생하도록 하였다. 최적화를 통한 안테나의 신호를 선정한 결과 이상적인 방사패턴과 동일한 결과가 나오는 것을 확인하였다.

Keywords

References

  1. B. Kim, Y. Park, H. Wi, M. Park, Y. Choi, J. Lee, W. Jung, D. Kim, B. Lee, "Isolation Enhancement of USB Dongle MIMO Antenna in LTE 700 Band Applications", IEEE Antennas and Wireless Propagation Letters, Vol. 11, pp. 961-964, 2012 https://doi.org/10.1109/LAWP.2012.2213293
  2. S. Shoaib, I. Shoaib, N. Shoaib, X. Chen, C. G. Parini, "MIMO Antennas for Mobile Handsets", IEEE Antennas and Wireless Propagation Letters, Vol. 14, pp. 799-802, 2015 https://doi.org/10.1109/LAWP.2014.2385593
  3. Jae-Ruen Shim, "A Novel Monopole Antenna for ISM 2.45GHz/5.8GHz Dual Band Characteristics by a Linear Monopole Antenna Combined with a Crossed Planar Monopole Antenna", Journal of the Korea Institute of Information, Electronics, and Communication Technology, Vol. 8, No. 6 pp. 515-519, 2015.
  4. Hong-Min Lee, "Multi-Band Antenna Using Folded Monopole Line and Log-Periodic Structure", Journal of the Korea Institute of Information, Electronics, and Communication Technology, Vol. 7, No. 3, pp. 142-146, 2014. https://doi.org/10.17661/jkiiect.2014.7.3.142
  5. A.P.Engelbrecht, "Fundamentals of Computational Swarm Intelligence", John Wiley & Sons, 2005
  6. Aaron J. Kerkhoff, Robert L. Rogers, and Hao Ling, "Design and Analysis Planar Monopole Antennas Using a Genetic Algorithm Approach", IEEE Trans. Antennas Propag., Vol. 52, No. 10, pp. 2709-2718, Oct. 2004. https://doi.org/10.1109/TAP.2004.834429
  7. M. Ohira, H. Deguchi, M. Tsuji, and H. Shigesawa, "Multiband Single-layer Frequency Selective Surface Designed by Combination of Genetic Algorithm and Geometry-refinement Technique", IEEE Trans. Antennas Propag., Vol. 52, No. 11, pp. 2925-2931, Nov. 2004. https://doi.org/10.1109/TAP.2004.835289
  8. Y. Ge, K. P. Esselle, "GA/FDTD Technique for the Design and Optimization of Periodic Metamaterials", IET Microw. Antennas Propag., Vol. 1, No. 1, pp. 158-164, Feb. 2007. https://doi.org/10.1049/iet-map:20050313
  9. W. L. Stutzman, G. A. Thiele, Antenna Theory and Design, 2nd ed., Chap. 3, pp 125-128, John Wiley & Sons, 1998